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a b s t r a c t

Moray eels (Muraenidae) are apex predators on coral reefs around the world, but they are not well stud-
ied because their cryptic habitats and occasionally aggressive behaviors make them difficult to collect.
We provide a molecular phylogeny of moray eels including 44 species representing two subfamilies, eight
genera, and all tropical ocean basins. Phylogenetic relationships among these taxa are estimated from
portions of mitochondrial loci cytochrome b (632 bp) and cytochrome oxidase subunit 1 (596 bp), and por-
tions of the nuclear loci RAG-1 (421 bp) and RAG-2 (754 bp). We test four sets of contrasting phylogenetic
hypotheses using Bayes Factors, Shimodaira–Hasegawa tests, and Templeton tests. First, our results sup-
port the subfamily-level taxonomic distinction between true morays (Muraeninae) and snakemorays
(Uropterygiinae), statistically rejecting hypotheses of non-monophyly for each subfamily. Second, we
reject a monophyletic grouping of the genera Gymnomuraena and Echidna, which share a durophagous
(shell-crushing) cranial morphology and dentition, indicating that the durophagous characters are not
homologous. Third, we demonstrate that durophagous feeding habits and associated morphological char-
acters have evolved in parallel in an ancestor of Gymnomuraena and at least three additional times within
the genus Echidna. Finally, the tree topology indicates multiple invasions of the Atlantic from the Indo-
Pacific, one of these occurring immediately prior to formation of the Isthmus of Panama approximately
2.8 MYA (million years ago) and one or two others occurring in the early to mid Miocene. Cladogenesis
occurring within the Atlantic during the mid Miocene and Pliocene also contributed to moray species
diversity. These data include a pair of sister species separated by the Isthmus of Panama, allowing a
time-calibrated tree with an estimated crown age for Muraenidae at between 41 and 60 MYA, consistent
with fossil evidence. Most lineage accumulation within morays occurred from the late Oligocene (24–
27 MYA) through the Miocene (5–23 MYA) to the late Pliocene (�2.5 MYA).

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

Moray eels (Muraenidae) are a taxonomic family of approxi-
mately 200 species of predatory reef fishes found in every tropical
ocean basin. Muraenid taxonomy was first reviewed by Günther
(1870), and more recent regional taxonomic reviews are available
for the Atlantic (Böhlke et al., 1989), Hawaii (Böhlke and Randall,
2000), the broader Indo-Pacific (Böhlke and Smith, 2002), the Red
Sea (Randall and Golani, 1995), and Australia (Böhlke and McCosker,
2001). Jiménez et al. (2007) and Almada et al. (2009) evaluated evo-
lutionary relationships among Mediterranean and northeastern
Atlantic moray eel species; however, neither study evaluated gener-

ic or higher-order taxonomic relationships within moray eels. Moray
eels are currently divided into two subfamilies, Muraeninae (mor-
ays) and Uropterygiinae (snakemorays). The distinguishing mor-
phological characteristics of Uropterygiinae include dorsal and
anal fins restricted to the tip of the tail; in Muraeninae, the dorsal
fin usually begins near the gill opening, and the anal fin begins just
posterior to the anus, approximately mid-body (Böhlke et al.,
1989). The subfamily Uropterygiinae contains four genera and 36
species (Loh et al., 2008), whereas Muraeninae contains nine genera
and approximately 166 species (Böhlke et al., 1989). Nelson (1966)
considers the deossification and loss of some hypobranchial ele-
ments from the pharyngeal jaws a shared derived character of Mura-
eninae that distinguishes this subfamily from Uropterygiinae and
other eels (order Anguilliformes). Mitochondrial DNA data from
west Pacific species support the phylogenetic distinction between
Uropterygiinae and Muraeninae (Loh et al., 2008). Moray eel species
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often occur sympatrically and can be diagnosed with varying levels
of resolution by the position of dorsal and anal fins, tooth placement
and morphology, larval pigmentation, adult color pattern, and verte-
bral numbers (Böhlke et al., 1989).

Mehta (2008) described two morphotypes within Muraenidae
corresponding to piscivorous (fish eating) and durophagous
(shell-crushing) jaws. These morphotypes differ in their cranial
and pharyngeal jaw structures and most noticeably in their denti-
tion. Piscivorous species have elongate oral jaws with numerous
long, recurved fang-like teeth. The oral jaws of durophagous mor-
ays are short, recurved, and covered with numerous molariform
teeth for crushing shelled prey. Dietary studies confirm that spe-
cies classified by their cranial morphology, oral jaws and dentition
(as described above) as durophagous feed primarily on crusta-
ceans, whereas those with piscivorous morphology feed primarily
or exclusively on fishes (literature reviewed in Table 1 of Mehta,
2008). Taxonomically, the piscivorous morphology characterizes
the largest genus of Muraeninae (Gymnothorax) and most of the
remaining genera, and it resembles the jaws of uropterygiines,
which lack the durophagous form. The durophagous morphology
occurs in the genus Echidna (with 11 recognized species) and the
monotypic genus Gymnomuraena. It is unknown whether the duro-
phagous morphology is homologous among these two genera and
11 species, or whether they include parallel origins of a duropha-
gous jaw from a (presumed) piscivorous ancestor.

Muraenidae includes approximately 150 Indo-Pacific species
and 50 Atlantic species (Böhlke et al., 1989; Böhlke and Smith,
2002). Most reef fishes have a center of diversity in the Indo-Pacific
(Briggs, 1999), which potentially includes the sites of origin of

many taxa. Butterflyfishes (Fessler and Westneat, 2007) and wrass-
es of the family Labridae (Westneat and Alfaro, 2005) show multi-
ple invasions from the Indo-Pacific into the Atlantic. Conversely,
Atlantic gobies of the genus Gnatholepis (Rocha et al., 2005), pygmy
angelfishes of the genus Centropyge (Bowen et al., 2006) and the
wrasse genera Halichoeres (Barber and Bellwood, 2005) and Thalas-
soma (Bernardi et al., 2004), represent single colonization events
from the Indo-Pacific via southern Africa. At least three well-sur-
veyed groups of reef fishes (damselfish, some wrasses, and parrotf-
ishes) show multiple invasions of and local diversification within
the western Atlantic (Barber and Bellwood, 2005; Robertson
et al., 2006; Rocha et al., 2008). Multiple genera of moray eels occur
in the Atlantic, and the widespread genus Gymnothorax occurs in
every ocean basin. It is unclear whether the occurrence of Gymno-
thorax species in the Atlantic represents multiple invasions from
the Indo-Pacific or a single invasion and subsequent speciation in
the Atlantic.

We generate a phylogeny of 44 moray eel species to test four ma-
jor hypotheses about moray eel evolutionary history and biogeogra-
phy. First, we test hypotheses of monophyly for the morphologically
diagnosable subfamilies Muraeninae and Uropterygiinae. Second,
we test the hypothesis that the durophagous genera Gymnomuraena
and Echidna form a monophyletic group and that their evolutionarily
derived feeding morphologies are homologous. Prior taxonomic
grouping of the monotypic genus Gymnomuraena with Echidna is
based primarily on shared durophagy and not well supported by
other morphological characters. Third, we test monophyly of the
genus Echidna and the associated hypothesis that durophagy is
homologous within the genus. Finally, we test the hypothesis that

Fig. 1. Expected topologies based on four null hypotheses. Topologies are presented in order of increasing resolution, with the groupings whose monophyly is being tested
shown in bold type. All three metrics (Bayes Factors, S-H, and Templeton tests) indicate statistically significant rejection of hypotheses 2–4 and of the converse of hypothesis
1 using a concatenation of all molecular markers.
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Atlantic members of Gymnothorax form a monophyletic group and
represent a single invasion from the Indo-Pacific. Fig. 1 summarizes
expected topologies corresponding to each of the four hypotheses.
We use fossil and biogeographic data to produce a time-calibrated
phylogeny to test these hypotheses and to estimate a crown age
for the extant moray lineages, and approximate timing of interoce-
anic exchanges between the Atlantic and Indo-Pacific.

2. Materials and methods

2.1. Sequence generation

We acquired specimens from tissue banks, personal collections,
collaborators, and the pet trade when voucher and locality infor-
mation were available. Author DGS at the United States National
Museum confirmed the identity of a voucher specimen for each
DNA sequence in this study. We extracted DNA using Viogene
DNA Kits (www.viogene.com) and manufacturer’s protocols. Poly-
merase chain reactions featured a total volume of 25 lL including
5 lL of Promega (www.promega.com) 5� buffer, 2.5 lL of 25 mM
MgCl2, 2.5 lL of 0.2 lM dNTPs, 2.5 lL of 0.2 lM of each primer,
0.125 lL (1 unit) of Promega GoTaq DNA polymerase, and 2 lL of
template DNA at approximately 5 ng/lL. A 632-bp fragment of
cytochrome b (CYB) was amplified using the primers L14725 (50-
GTG ACT TGA AAA ACC ACC GTT G-30) (Song et al., 1998) and
H15573 (50-AAT AGG AAG TAT CAT TCG GGT TTG ATG-30) (Taberlet
et al., 1992) and an annealing temperature of 50 �C. A 596-bp frag-
ment of cytochrome oxidase subunit 1 (COI) was amplified using
primers FishF2 (50-TCG ACT AAT CAT AAA GAT ATC GGC AC-30)
and FishR2 (50-ACT TCA GGG TGA CCG AAG AAT CAG AA-30) (Ward
et al., 2005) and annealing temperature of 50 �C. A 421-bp frag-
ment of the nuclear recombination activation gene RAG-1 was
amplified using primers RAG1-F3 (50-GCC TCA GAA AAC ATG GTG
CT-30) and RAG1-R3 (50-CCA CAC AGG TTT CAT CTG GA-30) (Reece
et al., 2010) with an annealing temperature of 50 �C. A 754-bp frag-
ment of the nuclear recombination activation gene RAG-2 was
amplified using primers RAG2-F3 (50-AGG TGA CCC TTC GTT GTC
AG-30) and RAG2-R3 (50-ATG AGG CTC CCT TCC AAA GT-30) (Reece
et al., 2010) at an annealing temperature of 52 �C. The thermal pro-
files for PCR were 95 �C for 3 min, followed by 35 cycles of 95 �C for
1 min, annealing temperature for 40 s, and 72 �C for 45 s, with a fi-
nal elongation at 72 �C for 7 min.

PCR products were visualized through 1.5% agarose gel electro-
phoresis and purified using Exo-Sap or Viogene Gel Purification
Kits using manufacturer’s protocols. Sequences were generated
on ABI 3130 and ABI 3330 Automated DNA sequencers at the
Washington University Genome Sequencing Center and the Smith-
sonian Museum Support Center using PCR primers listed above.
DNA sequences were manually edited using Sequencher v.4.8,
and aligned by hand. Author JSR performed all sequencing and
editing. For nuclear markers, heterozygous positions were identi-
fied by a secondary peak in the electropherograms reaching at least
25% of the intensity of the primary peak. Gametic phases of nuclear
sequences with more than a single heterozygous site were esti-
mated using a Bayesian approach implemented in the software
program Phase v.2.1 (Stephens and Donnelly, 2003; Stephens
et al., 2001). All Phase analyses were run through five iterations
with different random-number seeds and run for 1000 iterations
with a single thinning interval and 100 burn-in iterations. Consis-
tency of results was determined by examining allele frequencies
and coalescent goodness-of-fit measures estimated for each of
the four runs. If haplotypes could not be estimated with 90% pos-
terior probability, each ambiguous site was coded as missing data.
Less than 3% of all nucleotide characters were coded as missing
data under this criterion.

2.2. Phylogenetic analyses

We calculated Tajima’s D (Tajima, 1989) test for selection in
DNAsp v.5.1.0 (Rozas et al., 2003) to ensure that the loci included
in this study conformed to neutral expectations. Phylogenetic trees
were constructed in the programs MrBayes v.3.1 (Ronquist and
Huelsenbeck, 2003) and BEAST v.1.5.4 (Drummond and Rambaut,
2007). We used four anguilliform outgroups (Fig. 2) for combined
portions of the mitochondrial genes CYB and COI, and for the nucle-
ar genes RAG-1 and RAG-2. A model of evolution was computed for
three partitions within each gene region, corresponding to 1st, 2nd
and 3rd codon positions, using jModelTest v.0.1.1(Posada, 2008).
Each of three MrBayes runs, corresponding to combined mtDNA,
RAG-1, and RAG-2, consisted of 3,000,000 iterations of four chains
replicated in two independent runs with a sampling interval of
100 iterations and burn-in of 7500 runs. Each run reached stationa-
rity with these values; effective sample-size values were over 200
for each parameter estimated, and the standard deviations be-
tween independent runs had stabilized and were below 0.001. Sta-
tionarity of all runs was interpreted using Tracer v.1.5.0 (Rambaut
and Drummond, 2007). To demonstrate that a concatenated data-
set was appropriate for these gene regions, we conducted pairwise
Shimodaira–Hasegawa (S-H) tests (Shimodaira and Hasegawa,
1999) among the gene-tree topologies (mtDNA, RAG-1, RAG-2).
After all gene topologies were identified as congruent by S-H tests,
we used a concatenated dataset (maintaining the partitioning
strategy described above for a total of 4 genes � 3 partitions within
each gene = 12 partitions) to reconstruct evolutionary relation-
ships using the same run parameters as above but for 10,000,000
generations. The phylogenetic reconstruction executed in BEAST
differed only in the use of time calibrations, and those methods
are discussed below.

We tested four phylogenetic hypotheses that correspond to (1)
the two subfamilies of Muraeninae and Uropterygiinae are mono-
phyletic, (2) the durophagous genera Echidna and Gymnomuraena
form a monophyletic group with respect to the genus Gymnotho-
rax, (3) genus Echidna is monophyletic, and (4) Atlantic species of
Gymnothorax form a monophyletic group. The taxonomic sampling
scheme used to address each of these tests is described below. Each
of these hypotheses was tested by three metrics (in order of
increasing stringency) to determine whether the data statistically
discriminate hypotheses 1–4 from contrasting alternatives: Bayes
Factors (Kass and Raftery, 1995), S-H tests (Shimodaira and Hase-
gawa, 1999), and Templeton tests (Templeton, 1983). Bayes Factors
were calculated by comparing the logarithms of overall likelihood
scores of the favored topology to the best topology compatible
with the contrasting hypothesis. This value was then doubled
and interpreted as the Bayes Factor (2logB10) according to Table 2
in Kass and Raftery (1995). A Bayes Factor exceeding 10 is consid-
ered definitive rejection of the less likely topology (Kass and Raf-
tery, 1995). S-H and Templeton tests were executed in PAUP*

v.4.0 (Swofford, 2003). S-H tests with 1000 bootstrap replicates
checked statistical significance of differences in likelihood values
of the favored tree and those of the 100 most likely trees sampled
from the Bayesian posterior probability distribution of the con-
trasting hypothesis. We considered a hypothesis rejected if all of
the 100 best trees compatible with it were statistically rejected
as less compatible with the data than the favored tree. For Temple-
ton tests, we constrained a parsimony analysis to find the shortest
tree compatible with hypotheses 1–4 or their converse as appro-
priate, and then evaluated statistical significance of the differences
in length of the contrasting pairs of topologies.

All four phylogenetic hypotheses were tested using the concat-
enated gene trees comprising the three gene regions deemed con-
gruent by pairwise topological tests. We also evaluated support for
each hypothesis among each of the three gene trees by the same
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topological tests. We report only the results from the concatenated
gene tree because the full concatenated dataset never contradicted
support from any of the constituent gene trees (see Section 3).

All species sampled in this study were used to test each hypoth-
esis, and the pertinent taxonomic coverage is as follows: To test for
monophyly of Muraeninae and Uropterygiinae, we used samples
from three species of two genera in Uropterygiinae: Uropterygius
macrocephalus, U. fuscoguttatus, and Scuticaria tigrina and 41 Mura-
eninae species representing the genera Gymnomuraena, Gymnotho-
rax, Echidna, Enchelynassa, Rhinomuraena, and Enchelycore. We
tested monophyly of each subfamily and evaluated the possibility
that either family is monophyletic and nested within a paraphylet-
ic group comprising species from the other subfamily. Our second
hypothesis was that the durophagous species Gymnomuraena ze-
bra, Echidna nebulosa, E. polyzona, E. rhodochilus, and E. leucotaenia
form a monophyletic group relative to the 36 piscivorous species
sampled. Monophyly of Echidna was tested using the four Echidna
species relative to all other samples. Lastly, members of Indo-Paci-
fic Muraeninae were compared to five Atlantic Gymnothorax spe-
cies (G. saxicola, G. vicinus, G. ocellatus, G. moringa, and G. miliaris)
to test the hypothesis of a single invasion into the Atlantic from
the Indo-Pacific.

The program BEAST was used to estimate both a phylogenetic
topology and the timing of cladogenetic events based on two inde-
pendent and cross-validated calibrations. The BEAST analysis in-
cluded the same partitioning strategy and models of evolution as
did the MrBayes run. A joint tree was estimated from the four gene
trees, and molecular clock and mutation models were unlinked
across all 12 partitions. A relaxed uncorrelated lognormal clock
prior was used, along with a Yule speciation process, per recom-
mendations for interspecific phylogenies (Drummond and Ram-
baut, 2007). A uniform prior ranging between 2.8 and 3.1 MYA
(million years ago) was used as a biogeographic calibration point
for the TMRCA (time to most recent common ancestor) of G. melea-
gris and G. miliaris. These are suspected sister taxa based on larval
and adult similarities, and are separated by the Isthmus of Panama,
which created a land bridge between the Indo-Pacific and Atlantic
most recently at approximately 2.8–3.1 MY (Bermingham et al.,
1997; Duque-Caro, 1990; Lessios, 2008; Marko, 2002). A second
calibration point corresponding to a crown age was translated into
a flat prior between 50 and 65 MYA. This calibration is widely re-
garded as encompassing the diversification period of most major
orders of tropical marine fishes, including moray eels, based on fos-
sil evidence (Bellwood and Wainwright, 2002), and is consistent
with fossil calibrations in several time-calibrated phylogenetic
studies of marine fishes (Bellwood et al., 2004; Fessler and West-
neat, 2007; Westneat and Alfaro, 2005). To cross-validate the cali-
brations, two additional runs were made with only one calibration
as a prior, and the other estimated by the program. In both cases
the proposed calibrations fell within the 95% confidence intervals
of estimated values (see Section 3) and were used in the final anal-
ysis. As a final validation, we calculated the mutation rates for each
of the CYB and COI genes using an estimated closing of the Panama-
nian Isthmus at 3.1 MY, the portion of the estimate range (2.8–
3.1 MYA) historically used as a calibration point in other studies
of marine fishes; studies published prior to Lessios (2008) used a
3.1–3.5 MYA estimate for the most recent closing of the Panama-
nian Isthmus. The estimated mutation rates for CYB and COI are
concordant with those reported for other marine fishes (see Sec-
tions 3 and 4), and are interpreted as being reasonable estimates
for divergence times. Because nuclear gene divergences (RAG-1
and RAG-2) were also available for these sister taxa, and the
3.1 MY divergence time was concordant with previous work (Ber-
mingham et al., 1997), we calibrated a group-specific mutation
rate for the nuclear markers RAG-1 and RAG-2. After trial BEAST
runs and corresponding modifications to the priors, two final runs

were completed with 1 billion iterations, sampling every 5000
steps. We joined the two runs using LogCombiner 1.5.2 (Drum-
mond and Rambaut, 2007) and produced a time-calibrated phylog-
eny using TreeAnnotator 1.5.2 (Drummond and Rambaut, 2007).

3. Results

A total of 2403 bp of DNA was resolved, corresponding to
632 bp of the mitochondrial locus CYB and 596 bp of COI; 421 bp
of the nuclear gene RAG-1 and 754 bp of the nuclear gene RAG-2.
GenBank accession numbers for these sequences are HQ122450–
HQ122568. Tests for selection on mtDNA, RAG-1, and RAG-2 indi-
cated neutrality for all loci. Corresponding Tajima’s D values
(COI = 0.075, CYB = 0.11, RAG-1 = �1.3, RAG-2 = �1.7) were non-sig-
nificant at P > 0.1. All pairwise gene-tree topological S-H tests were
non-significant and support the use of concatenated, mixed-model
analyses. For the four hypotheses described in Fig. 1, all three tests
(Bayes Factors, S-H, and Templeton tests) were concordant. Results
in Fig. 1 indicate whether the data are compatible with the stated
hypothesis or reject it in favor of a contrasting topology (Fig. 2).

Our phylogenetic tests support our first hypothesis of mono-
phyly of subfamilies Muraeninae and Uropterygiinae. The most
parsimonious tree constrained to keep Uropterygiinae non-mono-
phyletic has 3211 steps, and the most parsimonious tree for a non-
monophlytic Muraeninae has 3226 steps, both significantly longer
than the favored tree (3115 steps) using S-H and Templeton tests
(P < 0.01 for each comparison) and Bayes Factors (BF = 84, 98,
respectively). Within Muraeninae, the durophagous Gymnomurae-
na zebra (monotypic genus) is the sister taxon to a clade compris-
ing all other muraenids. Our second hypothesis that
Gymnomuraena and Echidna form a monophyletic group is rejected
with all three tests of topological concordance (Bayes Factors = 64;
P < 0.01 for S-H and Templeton tests). Of the four Echidna species
sampled, E. leucotaenia and E. polyzona form a clade, but E. nebulosa
and E. rhodochilus are phylogenetically distantly removed from
these species and from each other (Fig. 2). Our third hypothesis
of monophyly of Echidna is statistically rejected (Bayes Fac-
tors = 28; P < 0.01 for S-H and Templeton tests). This hypothesis
is the only hypothesis for which support from one of the nuclear
markers (RAG-1) is lacking despite strong support from the mito-
chondrial DNA and the nuclear RAG-2 locus. Bayes Factors support
the unconstrained RAG-1 gene trees over constrained trees
(BF = 58), but the more stringent S-H and Templeton tests were
non-significant due to the lack of resolution for this hypothesis
at this locus. This result is not contradictory to the mitochondrial
and RAG-1 data, but merely lacks sufficient resolution. Neverthe-
less, the durophagous condition appears to have evolved at least
four times in muraenid evolutionary history.

The five species of Atlantic Gymnothorax include two species
pairs but do not form a monophyletic group with respect to
Indo-Pacific species. Topological tests uniformly reject our fourth
hypothesis of monophyly of Atlantic Gymnothorax species (Bayes
Factors = 96; P < 0.01 for S-H and Templeton tests). Our current
sampling indicates a minimum of three Gymnothorax invasions
from the Indo-Pacific into the Atlantic, and the actual number is
likely to be much higher.

The time-calibrated phylogeny produced in BEAST (Fig. 2) is
based on two calibration points, cross-validated in three ways:
(1) phylogenies created using only the 2.8–3.1 MY calibration esti-
mated a TMRCA for all Muraenidae at between 33 and 74 MY, fully
encompassing the external calibration of 50–65 MY. (2) Phyloge-
nies using only the 50–65 MY calibration for all Muraenidae esti-
mated a TMRCA between G. miliaris and G. meleagris at 1.4–
5.2 MY, which encompasses the 2.8–3.1 MY calibration. (3) Using
a divergence time of 3.1 MY (Duque-Caro, 1990; Lessios, 2008)
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for the sister taxa G. miliaris and G. meleagris, we calculate a muta-
tion rate of 2.1% divergence per MY (between lineages) for portions
of the CYB gene and 1.2% for portions of the COI gene; both values
mirror those reported in the literature for marine fishes (see Sec-
tion 4). Calibrations for RAG-1 and RAG-2 based on combined
mtDNA divergences yield estimated rates of 0.45% and 0.35% diver-
gence per MY (between lineages), respectively.

4. Discussion

Despite the potential difficulties in identifying and classifying
moray species (Randall, 2007), our results support the deepest
morphology-based taxonomy within Muraenidae; subfamily clas-
sifications of Muraeninae and Uropterygiinae. These subfamilies
are distinguished by a suite of diagnostic characteristics, including
restriction of the anal and dorsal fins to the posterior tip of the tail
in Uropterygiinae and their extension beyond this region in Mura-
eninae. Based on our current sampling of Muraenidae, the two sub-
families are monophyletic and sister taxa. A previous study with
more thorough sampling of Uropterygiinae (Loh et al., 2008) is
compatible with this conclusion. Our molecular data support the
inferences that morphological synapomorphies of the Muraeninae
(loss of hypobranchial elements from the pharyngeal jaws) and
Uropterygiinae (dorsal and anal fins restricted to tip of tail) are ro-
bust, thus we doubt that additional sampling of species will render
either family non-monophyletic.

The zebra moray, Gymnomuraena zebra, represents a monotypic
genus characterized by a strongly ossified skeleton, enlarged der-
mal bones, and posterior placement of the anus. Gymnomuraena ze-

bra and members of the genus Echidna feed almost exclusively on
crustaceans, and all share common morphological features associ-
ated with this diet, including rounded, molariform teeth, and short,
recurved jaws. Gymnomuraena zebra appears to have diverged from
a common ancestor of all other Muraeninae approximately
43 MYA, and based on our phylogenetic inferences, its duropha-
gous feeding and associated morphological characters evolved sep-
arately from those of other durophagous muraenines.
Nonmonophyly of the durophagous genus Echidna indicates that
durophagous feeding and associated jaw morphology evolved at
least three additional times in Muraeninae; six unsampled species
of Echidna, including one in the Atlantic, might include additional
origins of durophagous feeding. Morphology-based taxonomy in
this case is confounded by parallel evolution of durophagy and
associated jaw morphology in Muraeninae. Remarkably, the nom-
inal Echidna species in our survey are separated by about 20 MY.
This finding will warrant further morphological investigations
and revision of the genus Echidna. The genus Echidna is formally
recognized by a type specimen of E. nebulosa, which in our sam-
pling represents the sister taxon to a clade comprising Gymnotho-
rax, Enchelycore, Enchelynassa, Rhynomuraena, and the remaining
sampled species of Echidna. The genus Echidna is perhaps best re-
tained for E. nebulosa and any unsampled species later found to
be closer to E. nebulosa than to any species of Gymnothorax. Be-
cause Gymnothorax is rendered paraphyletic by the remaining
sampled species of Echidna and by the genera Enchelycore, Enche-
lynassa, and Rhynomuraena, to reflect a monophyletic taxonomic
grouping, all of these species are best placed in genus Gymnothorax.

Taxonomic families and subfamilies of reef fishes typically have
broad or even cosmopolitan distributions with a center of species

Fig. 2. Bayesian phylogenetic reconstruction of the time-calibrated phylogeny of Muraenidae based on a concatenated dataset of portions of the COI, CYB, RAG-1, and RAG-2
genes. The two subfamilies are labeled, and an asterisk at a node indicates Bayesian posterior probability support above 0.95. Divergence times are in millions of years, with
gray bars denoting the 95% posterior probability densities around point estimates. Atlantic species of the genus Gymnothorax are followed by ‘‘ATL” in bold type, and the
species names for all durophagous species are in bold type.
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diversity in an area called the Coral Triangle (Allen, 2008; Briggs,
2009; Veron et al., 2009). Species diversity decreases with distance
from the Coral Triangle, and is almost universally lower in the
Atlantic (e.g., Briggs, 1995; Myers, 1991; Springer, 1982; Veron,
1995). Some lineages of reef fishes have invaded the Atlantic multi-
ple times (e.g., Fessler and Westneat, 2007), and others have diver-
sified there following a single invasion (Muss et al., 2001). These
invasions could occur from the proto-eastern Pacific prior to clo-
sure of the Isthmus of Panama 2.8–3.1 MYA (Duque-Caro, 1990;
Lessios, 2008), from the Indian Ocean via southern Africa (Gordon,
2003), or through the now closed (15–20 MYA) Tethys Sea (Smith
et al., 2004). The southern African pathway effectively closed to
tropical fauna about 2.5 MYA with the onset of cold-water (Bengu-
ela) upwelling, but opened intermittently at the end of each Pleis-
tocene glacial cycle (Peeters et al., 2004; Shannon, 1985). The five
Atlantic Gymnothorax species sampled represent at least two and
probably three invasions from the Indo-Pacific. Cladogenesis asso-
ciated with formation of the Isthmus of Panama explains the sep-
aration of the Atlantic G. miliaris from its Pacific sister species G.
meleagris 2.9 MYA. Two other pairs of Atlantic sister species are
G. moringa and G. vicinus (14.2 MYA; Fig. 2) and G. ocellatus and
G. saxicola (3.2 MYA; Fig. 2). Our phylogenetic analysis indicates
that the ancestral lineages of these two pairs of species each sepa-
rated from its closest Indo-Pacific relatives in the early to mid Mio-
cene (16–21 MYA), coincident with the closing of the Tethys Sea.
Although our favored topology indicates two separate invasions
of the Atlantic in the early to mid Miocene, branch support is not
sufficient to reject the alternative hypothesis of a single Atlantic
invasion followed by return of a descendant lineage to the Indo-Pa-
cific. The Atlantic contains most members of the unsampled genus
Muraena, which is hypothesized to be a relic formerly distributed
across the Tethys Sea 15–20 MYA (Almada et al., 2009; Smith
et al., 1994). This time frame is compatible with our inferences of
the oldest invasions of the Atlantic by Gymnothorax. We conclude
that recurring invasions from the Indo-Pacific and in situ speciation
both contribute to Atlantic moray diversity (Fig. 2).

Although our taxonomic sampling is too limited to estimate
lineage-accumulation rates for moray eels, our results indicate that
lineage accumulation was greatest in the Miocene (approximately
5–23 MYA), with relatively few lineages predating a late Oligocene
date of �25 MYA and few originations occurring in the Pliocene
(approximately 2.5–5 MYA). These dates are consistent with lim-
ited fossil evidence for the first appearance of moray eels at 34–
54 MYA (Benton, 1993), and of modern day Gymnothorax-type spe-
cies in the Mediterranean as recently as 5.3 MYA (Arambourg,
1927; Gaudant, 2002). Our prior work documents geographic ge-
netic continuity within species of Gymnothorax (Reece, 2010; Reece
et al., 2010), indicating that widespread discovery of cryptic spe-
cies in moray eels is unlikely, in contrast to results obtained for
many terrestrial and freshwater vertebrate taxa. Our estimate that
extant moray species trace their cladogenesis primarily to events
occurring between the late Oligocene and Pliocene is unlikely to
be biased by overlooking large numbers of younger, cryptic spe-
cies, and is consistent with a broad taxonomic review of marine
fish diversification (Rocha and Bowen, 2008). Our prior results also
indicate that some Gymnothorax species have likely maintained
geographically widespread distributions throughout the Indo-Paci-
fic for much of their evolutionary history. Although climatic cycles
produce recurring isolation of marine fish populations across the
Sunda Shelf on a scale of �100,000 years, geographically isolated
populations appear rarely to evolve reproductive isolation on this
timescale, and they subsequently merge genetically when sea lev-
els rise again to permit gene flow across the Sunda Shelf. The esti-
mated mitochondrial-haplotype coalescence time within G.
undulatus is late Miocene (�5.9 MYA), and comparable phylogeo-
graphic studies of three additional moray species indicate that

mitochondrial-haplotype coalescence exceeds 1.7 million years in
each case (Reece, 2010; Reece et al., 2010). If these results are typ-
ical for moray species, young cryptic species are probably uncom-
mon; therefore, our finding that most lineage accumulation dates
from the late Oligocene through the Miocene to the early Pliocene
should be robust to further species sampling.
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