Chapter 4 -Describing the Relation Between Two Variables

Regression and Correlation

Section 4.1, 4.2, and 4.3: In this section we show how the least square method can be used to develop a linear equation, $\mathrm{Y}=\mathrm{aX}+\mathrm{b}$, relating two variables, Y and X . The variable that is being predicted is called the Dependent(\mathbf{Y}) or Response variable and the variable that is being used to predict the value of the dependent variable is called the Independent(X) or Explanatory variable. We generally use Y to denote the dependent variable and use X to denote the independent variable.(Common types of relationships-see images below)

Example 1: The instructor in a freshman computer science course is interested in the relationship between the time using the computer system (X) and the final exam score (Y). Data collected for a sample of 10 students who took the course last semester are presented below. Draw the scatter plot.

In regression, the regular plot of Y vs X is called "scatter Plot".

$\mathrm{X}=$ Hours Using Computer System	$\mathrm{Y}=$ Final Exam Score
45	40
30	35.
90	75
60	65
105	90
65	50
90	90
80	80
55	45
75	65

Use the TI 83/84 to do a Scatter Plot using the data in the above table. First enter the values in the calculator

Using TI-83/84: stat, 1:Edit and enter X in L 1 and Y in L2.
After entering the data, do $2^{\text {nd }}$ and Y to access the statplot . Choose 1 for statplot 1 and turn it on, Type: $1^{\text {st }}$ one, Xlist:L1, Ylist:L2, Mark: Choose anyone of the three symbols, ZOOM \#9. Now you should be able to see the scater plot. For "Mark", I chose the square symbol to represent the points on the scatter plot.(see pictures below)

19 Texas Instruments	
L1	\|L2
45	4
詮	35
90	75
105	900
65	50
90	90

Looking at the scatter plot, the relationship between the two variables can be approximated by a straight line. Clearly, there are many straight lines that could represent the relationship between x and y. The question is, which of the straight lines that could be drawn "best" represents the relationship?

The least square method is a procedure that is used to find the line that provides the best approximation for the relationship between X and Y . We refer to this equation of the line developed using the least square method as the regression line. Use the TI 83/84 calculator to find the regression line.
First let us make sure your calculator is setup correctly. Perform the following sequence of commands: $2^{\text {nd }}$ and 0 to access the catalog, scroll down until you see "DiagnosticOn". Put your cursor next to DiagnosticOn and hit enter twice. (see pictures below)

Regression Line: $\quad \hat{Y}=\mathrm{aX}+\mathrm{b}$ where
$\mathrm{a}=$ slope of the line
$\mathrm{b}=\mathrm{y}$-intercept of the line
$\widehat{Y}=$ Predicted value of Y

Now use the calculator to find the regression line.
Using TI-83/84: stat, CALC, 4:LinReg(ax+b), $2^{\text {nd }}$ and 1 for L1, $2^{\text {nd }}$ and 2 for L 2 , and enter. (see pictures below)

For TI-84

Please note: the slope: $\mathrm{a}=0.8295$ and y -intercept: $\mathrm{b}=5.847$ linear correlation: $r=0.93686$ and R-Squared: $100\left(r^{2}\right) \%=$ $100(0.8777) \%=87.77 \%$

Example 2: Find the regression line for the data given in Example 1. Use the regression line to estimate y when $\mathrm{x}=80$. (Use TI-83/84)

$$
\mathrm{a}=0.8295 \text { and } \mathrm{b}=5.847(\text { From TI-83/84) }
$$

Thus the regression line is : $\quad \hat{Y}=(0.8295) X+5.847$
The linear relationship between X and Y is $\mathrm{r}=0.93686$ or 93.686%.
Question: Are the predictions of Y using X good(reliable)? Yes, if R-Squared $=100\left(r^{2}\right)$ is 65% or more, then the prediction is acceptable.

Prediction: When $\mathrm{x}=80, \hat{Y}=0.8295(80)+5.847=72.21$ (or use TI$83 / 84$). Is this a good prediction and why? Yes, since R-Squared $=87.77 \%$ is greater than 65%.

Using the calculator to make a prediction. First plot the scatter plot and regression line the same time. Using TI-83/84: stat, CALC, 4:LinReg(ax+b), $2^{\text {nd }}$ and 1 for L1, $2^{\text {nd }}$ and 2 for L2, VARS, Y-VARS, 1: Function, 1: Y1, and Enter, ZOOM \#9, TRACE, move cursor UP(arrow up) on the regression line, Type 80, Enter. This is a prediction for $\mathrm{X}=80, \mathrm{Y}=72.21$. Now, Type 60, and Enter. This is another prediction for $\mathrm{X}=60, \mathrm{Y}=55.619$. (see pictures below)

Least Square Method (Finding slope-a and y-intercept-b by hand) The values of b and a can be computed using the following equations.

$$
\mathrm{a}=\frac{\sum x y-n \bar{X} \bar{Y}}{\sum x^{2}-n(\bar{X})^{2}} \quad \text { and } \quad \mathrm{b}=\bar{Y}-\mathrm{a} \bar{X}
$$

where $\bar{X}=\frac{\sum x}{n}, \bar{Y}=\frac{\sum y}{n}$, and $\mathrm{n}=$ total number of observations.

Residual is the difference between the actual value of Y and the predicted value $\hat{Y}, Y-\hat{Y}$. The Residual is denoted by e, $\mathrm{e}_{i}=Y_{i}-\widehat{Y}_{i}$. If the residual is negative, Y is below \hat{Y} (Y is overestimated by \hat{Y}). If the residual is positive, Y is above \hat{Y} (Y is underestimated by \hat{Y}). Please note that the residual is the error of your estimate.

For $\mathrm{X}=80$ the actual value for $\mathrm{Y}=80$ from the data. In Example 2, the predicted value of Y, i.e. $\hat{Y}=72.21$. The Residual(error) is $e=Y-\hat{Y}=\mathbf{8 0 - 7 2 . 2 1}=\mathbf{7 . 7 9}$. The error is 7. 79. The value of Y at $\mathrm{X}=80$ is underestimated by 7.79 points.

Linear Correlation(r)

The linear correlation coefficient, \mathbf{r}, measures the strength of the linear association between two quantitative variables. You can get \mathbf{r} from TI- $83 / 84$.

Rules for interpreting \mathbf{r} :

a. The value of r always falls between -1 and 1 . A positive value of r indicates positive correlation and a negative value of indicates negative correlation.
b. The closer r is to 1 , the stronger the positive correlation and the closer r is to -1 , the stronger the negative correlation. Values of r closer to zero indicate no linear association.
c. The larger the absolute value of r , the stronger the relationship between the two variables.
d. r measures only the strength of linear relationship between two variables.

Below are some images noting the degree of linear relationship(r)

The Coefficient of Determination (R - Squared $=100\left(r^{2}\right) \%$)

We define R-Squared $=100\left(r^{2}\right) \%$ to be the coefficient of determination. You can get it from the TI-83/84.

Note: The coefficient of determination always lies between 0 and 1 and is a descriptive measure of the utility of the regression line for making prediction. Values of R-Squared near to zero indicate that the regression equation is not very useful for making predictions, whereas values of r^{2} near 1 or R-Squared near 100% indicate that the regression equation is extremely useful for making predictions. If R-Squared is 65% or more, then the prediction is acceptable.

Example 3: In example 1, are the predictions good?
From the TI-83, $R-$ Squared $=\mathbf{8 7 . 7 7 \%}$.
Yes, using the regression line, $\widehat{\mathrm{Y}}=(0.8295) \mathrm{X}+5.847$, the predictions are good.

Homework-Section 4.1, 4.2, and 4.3 Online - MyStatLab

Example: Real Life Application

Dr. XXXXX

I'm a VSU alumnus-class of '95. My sole proprietorship business (me) needs a solution to a math problem, and since my BS was in Psychology, I'm unqualified and was hoping you could help.

Much thanks in advance, Mr. XXXXXXXXXXX

Problem:

Below is a table. Left column is the length of an auger (it moves cement powder through a tube with a motorized "screw) . Right column is HP required to maintain a certain production "constant" at the respective length. I need to know the equation (if it exists) to obtain the HP given ANY length (eg. 12' or 28^{\prime}) . Length range is $10^{\prime}-40^{\prime}$. MS Excel showed me that the graph is a mild "S" shape, so I knew I was in trouble, given that anything beyond linear relationships is a nightmare for me.

Data	Length	HP
1	10	3.08
2	15	4.14
3	20	4.91
4	25	5.76
5	30	6.45
6	35	6.98
7	40	7.67

