Sections 8.2, 9.1, and 10.2 Population Proportion

Sections 8.2 - Distribution of the Sample Proportion

We might be interested in

- the proportion of US males who have health insurance,
- the proportion of imported cars in the US,
- the proportion of Americans who have Type II diabetes,

P: Population Proportion.
$\widehat{P}=\frac{x}{n}$: Sample Proportion. \widehat{P} is a point estimate of P , the population proportion.

Example 1: A sample of 200 married couples selected from throughout the United States showed that for 84 of the couples, both the husband and wife held full-time jobs. Use the sample results to estimate the proportion of all married couples in the United States for which both the husband and wife hold full-time jobs.
Solution: $\widehat{P}=\frac{x}{n}=\frac{84}{200}=0.42$

The Sampling Distribution of the proportion-CLT

The $\mu_{\widehat{P}}=E(\widehat{P})=P$ and the $\sigma_{\widehat{P}}=\sqrt{\frac{p(1-p)}{n}}$. For a simple random sample of size n from a population with a proportion, P, the sampling distribution of the sample proportion, \hat{P}, is approximately normally distributed with mean, P, and standard deviation of $\sigma_{\widehat{P}}=\sqrt{\frac{p(1-p)}{n}}$, if $\mathbf{n}<\mathbf{0 . 0 5 N}$ and $\mathbf{n p}(\mathbf{1}-\mathbf{p}) \geq \mathbf{1 0}$, i.e $\hat{P} \sim N\left(P, \sqrt{\frac{P(1-P)}{n}}\right)$.
Example 2: A county in West Virginia has a 9\% unemployment rate. To monitor the unemployment rate in that county, a monthly survey of 800 individuals is conducted by a state agency.
(a) Describe the shape of the sampling distribution of \widehat{P} when a sample size of 800 is used?
(b) In the sample of 800 , what is the probability at least 64 people will be unemployed?
(a) The shape is approximately Normal since $\mathrm{n}<0.05 \mathrm{~N}$ and $\mathrm{np}(1-\mathrm{p}) \geq 10$ i.e $\widehat{P} \sim N\left(P, \sqrt{\frac{P(1-P)}{n}}\right) \Rightarrow \hat{P} \sim N\left(0.09, \sqrt{\frac{0.09(1-0.09)}{800}}\right) \Rightarrow \hat{P} \sim N(0.09,0.0101)$
(b) $P(X \geq 64)=P\left(\frac{X}{800} \geq \frac{64}{800}\right)=P(\hat{P} \geq 0.08)=\operatorname{Normalcdf}(0.08, E 99,0.09,0.0101)=0.838937$

Sections 9.1 Confidence interval for a population proportion
Confidence interval for a proportion: $\widehat{P} \pm Z_{\frac{\alpha}{2}} \sqrt{\frac{\widehat{P}(1-\widehat{P})}{n}}$
Example 1. In a Roper Organizational poll of 2,000 adults, 1,280 have money in regular saving accounts. Find a 95% confidence interval for the true proportion of adults who have money in regular saving accounts.
Solution. $\widehat{P}=\frac{x}{n}=\frac{1280}{2000}=0.64$,
($0.619,0.661$) From TI-83/84
We are 95% confident that the percentage of adults having money in the saving account is $\mathbf{6 1 . 9 \%}$ to $\mathbf{6 6 . 1 \%}$.

Using TI-83/84: stat, TESTS, 1-PropZInterval (is A). Enter X: 1280, n: 2000, C-Level: 95 or .95, put your cursor on "calculate" and hit enter. You should get the range $(0.619,0.661)$.

Determination of the Sample Size: Let $\quad \mathbf{E}=Z_{\frac{\sigma}{2}} \sqrt{\frac{p(1-p)}{n}}$ Solving for \mathbf{n} gives us, $\mathbf{n}=\left(\frac{Z_{\frac{a}{z}}}{E}\right)^{2} P(1-P)$. To use this formula we need P, E, and $Z_{\frac{\alpha}{2}}$. If a preliminary estimate on P is given use it, if not use $P=\mathbf{0 . 5}$. E is always given in the word problem. $Z_{\frac{\alpha}{2}}$ needs to be determined using the conficence level given in the word problem. The TI83/84 command is Invnormal(percent, μ, σ). We practice the Invnormal in Chapter 7.

Example 2. We want to estimate with a maximum error of 3%, the true proportion of VSU students who would like Friday classes during the summer semester and we want 96% confidence in our results. How many VSU students must we survey?
$\alpha=1-0.96=0.04 \Rightarrow \frac{\alpha}{2}=\frac{0.04}{2}=0.02$. We need to find the value of $Z_{0.02}$ that has an area to the right of 0.02 and an area to the left of $1-0.02=0.98$. The calculator can only find Z scores using the area to the left. Hence; Invnormal(0.98).

Using TI-83/84: $2^{\text {nd }}$ and vars, invnorm(is \#3). Invnormal(0.98)=2.053748911
To apply the sample size formula, take 4 decimals without rounding; i.e. 2.0537. Since P is NOT given, then $P=0.5$. $\mathrm{E}=0.03$. Now we can use the formula.

Solution. $\mathrm{n}=\left(\frac{Z_{\frac{\alpha_{2}}{2}}}{E}\right)^{2} P(1-P)=\left(\frac{2.0537}{0.03}\right)^{2}(0.5)(1-0.5)$
$=1171.57 \approx 1172$. So, we need to survey 1172 voters. Please note: For the final answer for \mathbf{n} we always round up regardless of the decimal. It does not follow the rounding rules.

Example 3. The current percentage of voters favoring the Republican nominee is 61%. A pollster is hired to determine the percentage of voters favoring the Republican nominee. If we require 99% confidence that the estimated value is within 2% of the true value, how large should the sample be? $\alpha=1-0.99=0.01 \Rightarrow \frac{\alpha}{2}=\frac{0.01}{2}=0.005$. We need to find the value of $Z_{\frac{\alpha}{2}=0.005}$ that has an area to the right of 0.005 and an area to the left of $1-0.005=0.995$. The calculator can only find Z scores using the area to the left. Hence; Invnormal(0.995).

Using TI-83/84: $2^{\text {nd }}$ and vars, invnorm(is \#3). Invnormal(0.995)=1.575829303
To apply the sample size formula, take 4 decimals without rounding; i.e. 1.5758. P is given $P=0.61$ and $\mathrm{E}=0.02$. Now we can use the formula.

Solution. $\mathrm{n}=\left(\frac{Z_{\frac{\alpha}{2}}}{E}\right)^{2} P(1-P)=\left(\frac{2.5758}{0.02}\right)^{2}(0.61)(1-0.61)=$
$3946.01 \approx 3,947$. So, we need to survey 3,947 voters. Please note: For the final answer for \mathbf{n} we always round up regardless of the decimal. It does not follow the rounding rules.

Homework: Sections 8.2 and 9.1 Online - MyStatLab

Section 10.2 Hypothesis Testing for a Population Proportion

This is a hypothesis testing for Proportion(P) NOT the Mean (μ). Therefor, we are changing from μ to P ; i.e. μ_{0} to P_{0}.
$H_{0}: P=P_{0} \quad$ vs $\quad H_{1}:\left\{\begin{array}{ll}1 . & P \neq P_{0} \\ 2 . & P<P_{0} \\ 3 . & P>P_{0}\end{array}\right.$. Everything else we know about Hypothesis
Testing remains the same. Such as : Reject H_{0} if the P-Value is less than α and Do NOT Reject H_{0} if the P-Value is greater or equal to α.

Example 6. Mr. Dixon, a Republican, claims that he has the support of 55% of all voters in the 23 rd U.S. Congressional District. Can the Central Committee conclude that less than 55% of all voters support Mr. Dixon, if, out of a random sample of 500 registered voters, only 245 expressed their preference for Mr. Dixon? Use $\alpha=0.01$ as the level of significance.

Using TI-83/84: stat, TESTS, 1-PropZTest (is \#5), then choose "stats".
Enter $P_{o}: 0.55, \mathrm{X}: 245, \mathrm{n}: 500$, Prop: $<P_{o}$ (put your cursor on the appropriate Test and hit "enter"), put your cursor on "calculate" and hit enter. Look for the PValue: $\mathrm{p}=.0035005198$. (see calculator pictures below)

Soln. Step1: State the null and alternative hypotheses.

$$
\mathbf{H}_{0}: \mathrm{P}=0.55 \text { vs } \quad \mathbf{H}_{1}: \mathrm{P}<0.55
$$

Step2: Write the given information using proper symbols.
$\mathrm{n}=500, \widehat{P}=\frac{245}{500}=0.49, \widehat{P} \sim N\left(\mathrm{P}_{0}, \sqrt{\frac{\mathrm{P}_{\mathrm{P}\left(1-\mathrm{P}_{0}\right)}^{n}}{n}}\right) \Rightarrow \widehat{P} \sim N\left(0.55, \sqrt{\frac{0.5(1-0.5)}{500}}=0.0222\right), \alpha=.01$
Test statistic. $Z=\frac{\hat{P}-P_{0}}{\sqrt{\left(\frac{10-1-n)}{n \mid}\right.}}=-2.69679945$ (From TI-83/84)
Step3: From TI83/84. P-value $=0.0035$. Since the \mathbf{P}-value is less than $\boldsymbol{\alpha}=\mathbf{0} .01$, Reject \mathbf{H}_{0}.
Step4: Conclusion. Since the P-value $=.0035$ is less than $\alpha=.01$, we reject the null hypothesis and claim that the Central Committee has sufficient evidence to conclude that less than 55% of all voters support Mr. Dixon.

Example 7. The sponsor of a weekly television show believes that the studio audience consists of an equal number of men and women. Out of 400 persons attending the show on a given night, 220 are men. Using a level of significance of 0.03 , can we conclude that more than 50% of the people attending the show are men?

Using TI-83/84: stat, TESTS, 1-PropZTest (is \#5), then choose "stats".
Enter $P_{o}: 0.5, \mathrm{X}: 220, \mathrm{n}: 400$, Prop: $>P_{o}$ (put your cursor on the appropriate Test and hit "enter"), put your cursor on "calculate" and hit enter. Look for the PValue: $p=.0035005198$. (see calculator pictures below)

Soln. Step1: State the null and alternative hypotheses.

$$
\mathbf{H}_{0}: \mathrm{p}=0.5 \quad \text { vs } \quad \mathbf{H}_{a}: \mathrm{p}>0.5
$$

Step2: Write the given information using proper symbols.
$\mathrm{n}=400, \widehat{P}=\frac{220}{400}=0.55, \widehat{P} \sim N\left(\mathrm{P}_{0}, \sqrt{\frac{\mathrm{P}_{\mathrm{P}}\left(1-\mathrm{P}_{0}\right)}{n}}\right) \Rightarrow \widehat{P} \sim N\left(0.5, \sqrt{\frac{0.5(1-0.5)}{400}}=0.025\right), \alpha=0.03$
Test statistic. $\mathrm{Z}=\frac{\hat{p}-P_{0}}{\sqrt{\left(\frac{80}{\left(1-T_{0}\right)}\right.}}=2 \quad$ (From TI-83/84)
Step3: From TI83/84. P-value $=0.0228$. Since the \mathbf{P}-value is less than $\boldsymbol{\alpha}=\mathbf{0} .03$, Reject \mathbf{H}_{0}.
Step4: Conclusion. Since the P-value $=.0228$ is less than $\alpha=.03$, we reject the null hypothesis and claim we have sufficient evidence to conclude that more than 50% of the people attending the show are men.

Since is a clinical trial we can reasonably assume the data to be random
6. In a clinical trial, 17 out of 829 patients taking a prescription drug daily complained of flulike symptoms. Suppose that it is known that 1.7% of patients taking competing drugs complain of flulike symptoms. Is there sufficient evidence to conclude that more than 1.7% of this drug's users experience flulike symptoms as a side effect at the $\alpha=0.01$ level of significance? $829(0.017)(1-0.017)=13.8534$
Because $\operatorname{np}_{0}\left(1-p_{0}\right)=13,89 \quad$ (1) $\quad 10$, the sample size is (2) \quad es s tho $/ 5 \%$ of the population size, and the sample (3) Can be reasonably a sum med to be ya nd om.
(4) \qquad satisfied.
(Round to one decimal place as needed.)
Note: in (1) the answer is always " > " and (2) the answer is always "less than".
For (3) Since this is a clinical trial the answer is "can be reasonably assume to be random"
7. According to a certain government agency for a large country, the proportion of fatal traffic accidents in the country in which the driver had a positive blood alcohol concentration (BAC) is 0.38 . Suppose a random sample of 109 traffic fatalities in a certain region results in 51 that involved a positive BAC. Does the sample evidence suggest that the region has a higher proportion of traffic fatalities involving a positive BAC than the country at the $\alpha=0.01$ level of significance? $109(0,38)(1-0.38)=25.6804 \sim 25.7$
Because $n p_{0}\left(1-p_{0}\right)=(25,7$ (1) $\longrightarrow 10$, the sample size is (2) less than 5% of the population size, and the sample (3) is giventobe random.
i) is giventobe roundom.

Note: in (1) the answer is always " > " and (2) the answer is always "less than". For (3) Since this is given to be a random sample the answer is "is given to be random"

Similarly, \#8 and \#9 in the homework are like \#6.

Also, \#10 in the homework is like \#7.

