Chapter 2 Multivariate Distributions

Section 2.5 Independent Random Variables

Joint Density: $f(X_1, X_2)$. Marginal pdfs: $f_1(X_1)$ and $f_2(X_2)$.

$$f(X_{1}, X_{2}) = \begin{cases} f(X_{2}|X_{1})f_{1}(X_{1}) \\ or \\ f(X_{1}|X_{2})f_{2}(X_{2}) \end{cases}$$

Now suppose that $f(X_2|X_1)$ does not depend on X_1 .

Consider
$$f_2(X_2) = \int_{-\infty}^{\infty} f(X_1, X_2) dx_1 = \int_{-\infty}^{\infty} f(X_2 | X_1) f_1(X_1) dx_1$$
 so,
 $f_2(X_2) = f(X_2 | X_1) \int_{-\infty}^{\infty} f_1(X_1) dx_1 = f(X_2 | X_1)$.

Hence, if $f(X_1, X_2) = f(X_2|X_1)f_1(X_1)$ and $f_2(X_2) = f(X_2|X_1)$ then $f(X_1, X_2) = f_1(X_1)f_2(X_2)$.

Note: The same discussion applies to the discrete random variables.

Definition (Independence). Let the random variables X_1 and X_2 have the joint pdf $f(X_1, X_2)$ and the marginal pdfs $f_1(X_1)$ and $f_2(X_2)$, respectively. The random variables X_1 and X_2 are said to be independent if, and only if, $f(X_1, X_2) = f_1(X_1) f_2(X_2)$. Otherwise they are said to be dependent.

Note: There may be certain points $(x_1, x_2) \in \mathcal{A}$ at which $f(X_1, X_2) \neq f_1(X_1) f_2(X_2)$. However, if A is the set of points (x_1, x_2) at which the equality does not hold, then P(A) = 0.

Example 1:
$$f(X_1, X_2) = e^{-x_1 - x_2}; \quad 0 < x_1 < \infty, \quad 0 < x_2 < \infty.$$

 $f(X_1, X_2) = e^{-x_1} \cdot e^{-x_2} = f_1(X_1) f_2(X_2)$, where $\frac{f_1(X_1) = e^{-x_1}; \quad 0 < x_1 < \infty}{f_2(X_2) = e^{-x_2}; \quad 0 < x_2 < \infty}$

Example 2:
$$f(X_1, X_2) = x_1 + x_2; \quad 0 < x_1 < 1; \quad 0 < x_2 < 1.$$

 $f(X_1, X_2) = x_1 + x_2 \neq (x_1 + \frac{1}{2})(x_2 + \frac{1}{2}) = f_1(X_1)f_2(X_2)$, where $\begin{cases} f_1(X_1) = x_1 + \frac{1}{2}; & 0 < x_1 < 1 \\ f_2(X_2) = x_2 + \frac{1}{2}; & 0 < x_2 < 1 \end{cases}$

Theorem 2.5.1: Let the random variables X_1 and X_2 have the joint pdf $f(X_1, X_2)$. Then X_1 and X_2 are independent if and only if $f(X_1, X_2)$ can be written as a product of a non-negative function of x_1 alone and a product of a non-negative function of x_2 alone. That is, $f(X_1, X_2) = g(X_1) h(X_2)$, where $g(X_1) > 0$; $x_1 \in A_1$, and zero elsewhere, and $h(X_2) > 0$; $x_2 \in A_2$, and zero elsewhere.

Proof:

 \Rightarrow If X_1 and X_2 are independent, then

$$f(X_1, X_2) = f_1(X_1) f_2(X_2)$$
. Thus, $f(X_1, X_2) = g(X_1) h(X_2)$.

$$\leftarrow \text{If } f(X_1, X_2) = g(X_1)h(X_2) \text{ then}$$

$$f_1(X_1) = \int_{-\infty}^{\infty} f(X_1, X_2) dx_2 = \int_{-\infty}^{\infty} g(x_1)h(x_2) dx_2 = c_1g(x_1)$$

$$f_2(X_2) = \int_{-\infty}^{\infty} f(X_1, X_2) dx_1 = \int_{-\infty}^{\infty} g(x_1)h(x_2) dx_1 = c_2h(x_2).$$

We already know that $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(X_1, X_2) dx_1 dx_2 = 1$. Then,

$$1 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(X_1, X_2) dx_1 dx_2 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x_1) h(x_2) dx_1 dx_2 = \left[\int_{-\infty}^{\infty} g(x_1) dx_1 \right] \left[\int_{-\infty}^{\infty} h(x_2) dx_2 \right] = c_1 c_2$$

So, $f(X_1, X_2) = g(X_1) h(X_2) = c_1 g(X_1) c_2 h(X_2) = f_1(X_1) f_2(X_2).$

Hence, X_1 and X_2 are independent.

In Example 1:
$$f(X_1, X_2) = e^{-x_1 - x_2}; \quad 0 < x_1 < \infty, \quad 0 < x_2 < \infty.$$

 $f(X_1, X_2) = e^{-x_1} \cdot e^{-x_2} = f_1(X_1) f_2(X_2) \quad \text{, where} \quad \frac{f_1(X_1) = e^{-x_1}; \quad 0 < x_1 < \infty}{f_2(X_2) = e^{-x_2}; \quad 0 < x_2 < \infty}$

 X_1 and X_2 are independent.

In Example 2: $f(X_1, X_2) = x_1 + x_2; \ 0 < x_1 < 1; \ 0 < x_2 < 1.$ $f(X_1, X_2) = x_1 + x_2 \neq (x_1 + \frac{1}{2})(x_2 + \frac{1}{2}) = f_1(X_1)f_2(X_2)$, where $\frac{f_1(X_1) = x_1 + \frac{1}{2}; \ 0 < x_1 < 1}{f_2(X_2) = x_2 + \frac{1}{2}; \ 0 < x_2 < 1}$. X_1 and X_2 are dependent.

Example 3:
$$f(X_1, X_2) = e^{-x_1 - x_2}; \quad 0 < x_1 < x_2 < \infty$$
.
 $f(X_1, X_2) = e^{-x_1}. e^{-x_2} = f_1(X_1) f_2(X_2)$, where $\frac{f_1(X_1) = e^{-x_1}; \quad 0 < x_1 < \infty}{f_2(X_2) = e^{-x_2}; \quad 0 < x_2 < \infty}$

 X_1 and X_2 are dependent since the sample space is not a product space.

If the sample space is not a product space, that is, it's bounded by a curve that is neither horizontal nor a vertical line, then the random variables X_1 and X_2 are dependent.

Theorem 2.5.3: If X_1 and X_2 are independent with marginal pdfs $f_1(X_1)$ and $f_2(X_2)$, respectively, then $P(a < X_1 < b, c < X_2 < d) = P(a < X_1 < b) \cdot P(c < X_2 < d)$ for every a < b and c < d, where a, b, c, and d are constants.

Proof:

Since
$$X_1$$
 and X_2 are independent, then $f(X_1, X_2) = f_1(X_1) f_2(X_2)$.
 $P(a < X_1 < b, c < X_2 < d) = \int_c^d \int_a^b f(X_1, X_2) dx_1 dx_2 = \int_c^d \int_a^b f_1(x_1) f_2(x_2) dx_1 dx_2$
 $= \int_a^b f_1(x_1) dx_1 \int_c^d f_2(x_2) dx_2 = P(a < X_1 < b) \cdot P(c < X_2 < d).$

Theorem 2.5.4: Suppose X_1 and X_2 are independent random variables with marginal pdfs $f_1(X_1)$ and $f_2(X_2)$, respectively. Suppose also, that $E(u(X_1))$ and $E(v(X_2))$ exist. Then,

$$E(u(X_1) v(X_2)) = E(u(X_1)) \cdot E(v(X_2)).$$

Proof:

$$E(u(X_{1})v(X_{2})) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} u(X_{1})v(X_{2})f(X_{1}, X_{2}) dx_{1}dx_{2}$$

= $\left[\int_{-\infty}^{\infty} u(X_{1})f_{1}(X_{1})dx_{1}\right] \left[\int_{-\infty}^{\infty} v(X_{2})f_{2}(X_{2}) dx_{2}\right] = E(u(X_{1})) \cdot E(v(X_{2}))$

Example 4: $Cov(X,Y) = E(XY) - \mu_1 \mu_2$.

If X and Y are independent then $E(XY) = E(X)E(Y) = \mu_1\mu_2$. Hence, $Cov(X,Y) = E(XY) - \mu_1\mu_2 = E(X)E(Y) - \mu_1\mu_2 = \mu_1\mu_2 - \mu_1\mu_2 = 0$. Since, the covariance is zero the $\rho = \frac{cov(X,Y)}{\sqrt{\sigma_1^2\sigma_2^2}} = \frac{0}{\sqrt{\sigma_1^2\sigma_2^2}} = 0$.

Theorem 2.5.5: Suppose the joint mgf, $M(t_1, t_2)$, exists for the random variables X_1 and X_2 . Then X_1 and X_2 are independent if and only if $M(t_1, t_2) = M(t_1, 0)M(0, t_2)$, that is, the joint mgf factors into the product of the marginal mgfs.

Proof:

 \Rightarrow If X_1 and X_2 are independent, then

$$M(t_{1},t_{2}) = E(e^{t_{1}x_{1}+t_{2}x_{2}}) = E(e^{t_{1}x_{1}})E(e^{t_{2}x_{2}}) = M(t_{1},0)M(0,t_{2}).$$

 \Leftarrow Assume the joint mgf of X_1 and X_2 is given by $M(t_1, t_2) = M(t_1, 0)M(0, t_2)$.

Note:
$$M(t_1, 0) = \int_{-\infty}^{\infty} e^{t_1 x_1} f_1(x_1) dx_1$$
 and $M(0, t_2) = \int_{-\infty}^{\infty} e^{t_2 x_2} f_2(x_2) dx_2$

Thus we have

$$M(t_{1},0)M(0,t_{2}) = \left[\int_{-\infty}^{\infty} e^{t_{1}x_{1}}f_{1}(x_{1}) dx_{1}\right] \left[\int_{-\infty}^{\infty} e^{t_{2}x_{2}}f_{2}(x_{2}) dx_{2}\right] = \int_{-\infty}^{\infty}\int_{-\infty}^{\infty} e^{t_{1}x_{1}+t_{2}x_{2}}f_{1}(x_{1})f_{2}(x_{2}) dx_{1}dx_{2}.$$

By assumption $M(t_1, t_2) = M(t_1, 0) M(0, t_2)$; so $M(t_1, t_2) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{t_1 x_1 + t_2 x_2} f_1(x_1) f_2(x_2) dx_1 dx_2$.

But $M(t_1, t_2)$ is the mgf of X_1 and X_2 . Thus also

$$M(t_{1},t_{2}) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{t_{1}x_{1}+t_{2}x_{2}} f(X_{1},X_{2}) dx_{1} dx_{2}.$$

Hence, if $M(t_1, t_2) = M(t_1, 0)M(0, t_2)$, then X_1 and X_2 are independent.

HW: 2.5.1 to 2.5.6 pp. 116