Chapter 3 Some Special Distributions

Section 3.2 The Poisson Distribution

Consider the series $1+m+\frac{m^{2}}{2!}+\frac{m^{3}}{3!}+\frac{m^{4}}{4!}+\ldots=\sum_{x=0}^{\infty} \frac{m^{x}}{x!}$. The series converges to e^{m}, for all values of m. Now consider the function $f(x)=\frac{m^{x} e^{-m}}{x!} ; x=0,1,2, \ldots$, and zero elsewhere, where $m>0$.

Question: Is $f(x)$ a probability density function? (Yes)
1 . Since $m>0$, then $f(x) \geq 0$ and
2. $\sum_{x=0}^{\infty} f(x)=1$. Since $\sum_{x=0}^{\infty} \frac{m^{x} e^{-m}}{x!}=e^{m} e^{-m}=e^{0}=1$.
$f(x)$ is called a Poisson Distribution and the random variable X is discrete.
There are many applications that follow a Poisson distribution. For example:

1. Let the random variable X be the number of cars in an intersection in a certain interval of time. Given the appropriate m, X will follow a Poisson distribution.
2. At the grocery store. Let the random variable X be the number of customers served by the express lane at a given interval of time. Given the appropriate m, X will follow a Poisson distribution.

Derivation of the Poisson Distribution

To make the derivation easier, first make an outline of the major steps, and then fill in the details, for each step later.

Step 1: Definition of the terms and listing of assumptions
Let $g(x, w)=\mathrm{p}(x$ changes in an interval of lenght $w)$ and define $g(0,0)=1, g(x, 0)=0$. Furthermore, let the symbol $\mathrm{O}(h)$ represent any function such that $\lim _{h \rightarrow 0} \frac{\mathrm{O}(h)}{h}=0$, (Thus $h^{2}=\mathrm{O}(h)$, $h^{3}=\mathrm{O}(h), h^{2}+h^{3}=\mathrm{O}(h), \mathrm{O}(h)+\mathrm{O}(h)=\mathrm{O}(h)$.

The Poisson postulates (or assumptions) are:

a. $g(1, h)=\lambda h+\mathrm{O}(h), \lambda>0, h>0$ where λ is a positive constant. (The probability of one change in a short interval of time h is approximately proportional to the length of the interval)
b. $\sum_{x=2}^{\infty} g(x, h)=\mathrm{O}(h)$ (The probability of two or more changes in the same short interval of time h is approximately equal to zero)
c. The number of changes in any interval is independent of the number of changes in any nonoverlapping interval.

Step 2: Show that $g(0, w)=e^{-\lambda w}$ by getting $\frac{d g(0, w)}{d w}$ from $g(0, w+h)$, and $g(0, w)$, and the definition of the derivative.

Note: Before we show step 2 we need to know the probability of zero changes in a short interval h, i.e.
$g(0, h)$. Also note that from step 1, parts (a) and (b), we know the following:
$g(1, h)=\lambda h+\mathrm{O}(h)$ and $\sum_{x=2}^{\infty} g(x, h)=\mathrm{O}(h)$. Hence, $g(1, h)+\sum_{x=2}^{\infty} g(x, h)=\sum_{x=1}^{\infty} g(x, h)$.
Where $\sum_{x=1}^{\infty} g(x, h)=\lambda h+\mathrm{O}(h)+\mathrm{O}(h)=\lambda h+\mathrm{O}(h)$.

Now note that

$$
\begin{aligned}
& g(0, h)+\sum_{x=1}^{\infty} g(x, h)=1 \Rightarrow g(0, h)=1-\sum_{x=1}^{\infty} g(x, h) \Rightarrow g(0, h)=1-(\lambda h+\mathrm{O}(h)) \Rightarrow \\
& g(0, h)=1-\lambda h-\mathrm{O}(h)
\end{aligned}
$$

$$
g(0, w+h)=g(0, w) g(0, h)=g(0, w)(1-\lambda h-\mathrm{O}(h))=g(0, w)-\lambda h g(0, w)-\mathrm{O}(h) g(0, w)
$$

$$
g(0, w+h)-g(0, w)=-\lambda h g(0, w)-\mathrm{O}(h) g(0, w) \text { Now divide both sides by } h .
$$

$$
\frac{g(0, w+h)-g(0, w)}{h}=-\lambda g(0, w)-\frac{\mathrm{O}(h)}{h} g(0, w) \text { Now take the lipit } \underbrace{}_{0} \text { s } h \rightarrow 0
$$

$$
\lim _{h \rightarrow 0} \frac{g(0, w+h)-g(0, w)}{h}=\lim _{h \rightarrow 0}(-\lambda g(0, w))-\lim _{h \rightarrow 0}\left(\frac{\mathrm{O}(h)}{h} g(0, w)\right)
$$

$$
\frac{d g(0, w)}{d w}=-\lambda g(0, w) \Rightarrow \frac{d g(0, w)}{d w} \cdot \frac{1}{g(0, w)}=-\lambda \Rightarrow \frac{d \ln (\mathrm{~g}(0, \mathrm{w}))}{d w}=-\lambda \text { Now }
$$

integrate both sides with respect to W. \quad Step 1: $\mathrm{g}(0,0)=1$
$\ln (\mathrm{g}(0, \mathrm{w}))=-\lambda w+C \Rightarrow \mathrm{~g}(0, \mathrm{w})=e^{-\lambda w+C}$ For $w=0$ we have $\mathrm{g}(0,0)=e^{-\lambda \cdot 0+C} \Rightarrow 1=e^{C} \Rightarrow C=0$. Hence, $\mathrm{g}(0, \mathrm{w})=e^{-\lambda w}$.

Step 3: Show that $\frac{d g(x, w)}{d w}=-\lambda g(x, w)+\lambda g(x-1, w)$ from $g(x, w+h)$, and $g(x, w)$, and the definition of the derivative.

First note that

$$
\begin{aligned}
& g(x, w+h)=g(x, w) g(0, h)+g(x-1, w) g(1, h)+\overbrace{\{g(x-2, w) g(2, h)+\ldots+g(0, w) g(x, h)\}}^{\text {From Step } 1(b) \text { all the terms sum to the } \mathrm{O}(\mathrm{~h})} . \\
& g(x, w+h)=g(x, w) g(0, h)+g(x-1, w) g(1, h)+\mathrm{O}(h) \\
& g(x, w+h)=g(x, w)[1-\lambda h-\mathrm{O}(h)]+g(x-1, w)[\lambda h+\mathrm{O}(h)]+\mathrm{O}(h) \\
& g(x, w+h)=g(x, w)-\lambda h g(x, w)-\mathrm{O}(h) g(x, w)+\lambda h g(x-1, w)+\mathrm{O}(h) g(x-1, w)+\mathrm{O}(h) \\
& g(x, w+h)-g(x, w)=-\lambda h g(x, w)-\mathrm{O}(h) g(x, w)+\lambda h g(x-1, w)+\mathrm{O}(h) g(x-1, w)+\mathrm{O}(h)
\end{aligned}
$$

Now divide both sides by h.
$\frac{g(x, w+h)-g(x, w)}{h}=-\lambda g(x, w)-\frac{\mathrm{O}(h)}{h} g(x, w)+\lambda g(x-1, w)+\frac{\mathrm{O}(h)}{h} g(x-1, w)+\frac{\mathrm{O}(h)}{h}$

$$
\begin{aligned}
& \quad \begin{array}{l}
\text { Now take the } \operatorname{limit}^{2} h \rightarrow 0 .
\end{array} \lim _{h \rightarrow 0} \frac{g(x, w+h)-g(x, w)}{h}=-\lim _{h \rightarrow 0} \lambda g(x, w)-\lim _{h \rightarrow 0} \frac{\mathrm{O}(\mathrm{~h})}{h} g(x, w)+\lim _{h \rightarrow 0} \lambda g(x-1, w)+\lim _{h \rightarrow 0} \frac{0}{h} g(x-1, w)+\lim _{h \rightarrow 0} \frac{\mathrm{O}(h)}{h} \\
& \frac{d g(x, w)}{d w}=-\lambda g(x, w)+\lambda g(x-1, w)
\end{aligned}
$$

Step 4: Express $e^{\lambda w} g(x, w)$ as an integral using the result in Step 3.

$$
\frac{d g(x, w)}{d w}=-\lambda g(x, w)+\lambda g(x-1, w) \Rightarrow \frac{d g(x, w)}{d w}+\lambda g(x, w)=\lambda g(x-1, w)
$$

Now multiply both sides by $e^{\lambda \omega}$.

$$
\begin{aligned}
& \Rightarrow e^{\lambda w} \frac{d g(x, w)}{d w}+\lambda e^{\lambda w} g(x, w)=\lambda e^{\lambda w} g(x-1, w) \\
& \Rightarrow \frac{d\left(e^{\lambda w} g(x, w)\right)}{d w}=\lambda e^{\lambda w} g(x-1, w) \text { Now integrate both sides from } 0 \text { to } w \\
& \Rightarrow e^{\lambda w} g(x, w)=\int_{0}^{w} \lambda e^{\lambda w} g(x-1, w) d w
\end{aligned}
$$

Step 5: Show that $g(x, w)=\frac{(\lambda w)^{x} e^{-\lambda w}}{x!}$. Use the result from Step 4 and mathematical induction to get the final result.

Let $x=2 \Rightarrow e^{\lambda w} g(2, w)=\int_{0}^{w} \lambda e^{\lambda w} g(2-1, w) d w=\int_{0}^{w} \lambda e^{\lambda w} g(1, w) d w=\int_{0}^{w} \lambda e^{\gamma w} \frac{(\lambda w) e^{-\lambda w}}{1} d w$

$$
\Rightarrow e^{\lambda w} g(2, w)=\frac{\lambda^{2} w^{2}}{2.1} \Rightarrow g(2, w)=\frac{\lambda^{2} w^{2} e^{-\lambda w}}{2.1} \Rightarrow g(2, w)=\frac{(\lambda w)^{2} e^{-\lambda w}}{2.1}
$$

Let $x=3 \Rightarrow e^{\lambda w} g(3, w)=\int_{0}^{w} \lambda e^{\lambda w} g(3-1, w) d w=\int_{0}^{w} \lambda e^{\lambda w} g(2, w) d w=\int_{0}^{w} \lambda e^{\lambda w} \frac{(\lambda w)^{2} e^{-\lambda w}}{2.1} d w$

$$
\Rightarrow e^{\lambda w} g(3, w)=\frac{\lambda^{3} w^{3}}{3.2 \cdot 1} \Rightarrow g(3, w)=\frac{\lambda^{3} w^{3} e^{-\lambda w}}{3.2 .1} \Rightarrow g(3, w)=\frac{(\lambda w)^{3} e^{-\lambda w}}{3!}
$$

The formula is correct for $x=0,1,2,3, \ldots$. Now assume that it holds for $x-1$, so that $g(x-1, w)=\frac{(\lambda w)^{x-1} e^{-\lambda w}}{(x-1)!}$.

Then $e^{\lambda w} g(x, w)=\int_{0}^{w} \lambda e^{\lambda w} g(x-1, w) d w=\int_{0}^{w} \lambda e^{\gamma w} \frac{(\lambda w)^{x-1} e^{-\lambda w}}{(x-1)!} d w$

$$
\Rightarrow e^{\lambda w} g(x, w)=\frac{\lambda^{x} w^{x}}{x \ldots .3 .2 \cdot 1} \Rightarrow g(x, w)=\frac{\lambda^{x} w^{x} e^{-\lambda w}}{x \ldots .3 \cdot 2 \cdot 1} \Rightarrow g(x, w)=\frac{(\lambda w)^{x} e^{-\lambda w}}{x!}
$$

Since the formula holds for $x=2$, it holds for $x=3$. Since it holds for $x=3$, it holds for $x=4$, e.t.c., for all integer X.

The Moment-generating function.
$M(t)=\sum_{x=0}^{\infty} e^{t x} f(x)=\sum_{x=0}^{\infty} e^{t x} \frac{m^{x} e^{-m}}{x!}$ where $m=\lambda w$
$M(t)=e^{-m} \sum_{x=0}^{\infty} \frac{\left(m e^{t}\right)^{x}}{x!}=e^{-m} e^{m e^{t}} \Rightarrow M(t)=e^{m\left(e^{t}-1\right)}$ for real values of t.
$M^{\prime}(t)=e^{m\left(e^{t}-1\right)}\left(m e^{t}\right) \quad$ and $\quad M^{\prime \prime}(t)=e^{m\left(e^{t}-1\right)}\left(m e^{t}\right)+e^{m\left(e^{t}-1\right)}\left(m e^{t}\right)^{2}$.
Work for the derivative, $M^{\prime}(t)$. Let $y=e^{m e^{t}-m}$ and $u=m e^{t}-m$ then $\mathrm{y}=\mathrm{e}^{\mathrm{u}}$.
$\frac{d y}{d t}=\frac{d y}{d u} \cdot \frac{d u}{d t}=\left(e^{u}\right) \cdot\left(m e^{t}\right)=\left(e^{m e^{t}-m}\right)\left(m e^{t}\right)=e^{m\left(e^{t}-1\right)}\left(m e^{t}\right)$.

Now: $\quad \mu=M^{\prime}(0)=m \quad$ and $\quad \sigma^{2}=M^{\prime \prime}(0)-\left(M^{\prime}(0)\right)^{2}=m+m^{2}-m^{2}=m$.

Note: $\mu=\sigma^{2}=m>0$. Hence, $f(x)=\frac{\mu^{x} e^{-\mu}}{x!} ; x=0,1,2,3, \ldots$, and zero elsewhere. Also, the Poisson random variable X is denoted by $\mathrm{X} \sim \operatorname{Poisson}(\mu)$.

Note: $M(t)=e^{\mu\left(e^{t}-1\right)}$

Examples 1, 2, and 3 on pages 152-153.

HW: Learn the derivation of the Poisson distribution.

