Chapter 3 Some Special Distributions

Section 3.4 The Normal Distribution
Consider the integral $I=\int_{-\infty}^{\infty} e^{-\frac{y^{2}}{2}} d y$. This integral exists since $e^{-\frac{y^{2}}{2}}$ is continuous and
bounded by $0<e^{-\frac{y^{2}}{2}}<e^{-|x|+1}$, for $-\infty<y<\infty$ and $\int_{-\infty}^{\infty} e^{-|y|+1} d y=2 e$.
To evaluate the integral I consider the following work. Note, that $I>0$ and
$I \times I=I^{2}=\left(\int_{-\infty}^{\infty} e^{-\frac{y^{2}}{2}} d y\right)\left(\int_{-\infty}^{\infty} e^{-\frac{z^{2}}{2}} d z\right) \Rightarrow I^{2}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\frac{y^{2}+z^{2}}{2}} d y d z$. We evaluate this integral by changing to polar coordinates.

$$
\sin \theta=\frac{z}{r} \text { and } \cos \theta=\frac{y}{r}
$$

Let $y=r \cos \theta$ and $z=r \sin \theta$. The Jacobean of the transformation is given by

$$
\begin{aligned}
& J=\left|\begin{array}{cc}
\frac{d y}{d r} & \frac{d y}{d \theta} \\
\frac{d z}{d r} & \frac{d z}{d \theta}
\end{array}\right|=\left|\begin{array}{rr}
\cos \theta & -r \sin \theta \\
\sin \theta & r \cos \theta
\end{array}\right| \\
& J=r \cos ^{2} \theta-\left(-r \sin ^{2} \theta\right)=r \cos ^{2} \theta+r \sin ^{2} \theta=r\left(\cos ^{2} \theta A \sin ^{2} \theta\right)=r
\end{aligned}
$$

$$
I^{2}=\int_{0}^{2 \pi} 1 d \theta=2 \pi \quad \Rightarrow I= \pm \sqrt{2 \pi} \quad \text { Since } I>0 \quad \text { we have } \quad I=\sqrt{2 \pi}
$$

$$
I=\int_{-\infty}^{\infty} e^{-\frac{y^{2}}{2}} d y=\sqrt{2 \pi} \Rightarrow \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{y^{2}}{2}} d y=1
$$

Now, introduce a new variable, say $Y=\frac{X-a}{b} ; \Rightarrow d y=\frac{1}{b} d x$ where $b>0$.

$$
\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{y^{2}}{2}} d y=1 \Rightarrow \int_{-\infty}^{\infty} \frac{1}{b \sqrt{2 \pi}} e^{-\frac{\left(\frac{x-a}{b}\right)^{2}}{2}} d x=1
$$

$f(x)=\frac{1}{b \sqrt{2 \pi}} e^{-\frac{\left(\frac{x-a}{b}\right)^{2}}{2}} ;$ where $-\infty<x<\infty$
Note: $f(x)$ satisfies the conditions of being a pdf of the continuous type random variable. It's called the Normal distribution function and it's denoted by $X \sim N\left(\mu, \sigma^{2}\right)$ or $X \sim N(\mu, \sigma)$.

Moment generating function
$M(t)=E\left(e^{t x}\right)=\int_{-\infty}^{\infty} e^{t x} \frac{1}{b \sqrt{2 \pi}} e^{-\frac{\left(\frac{x-a}{b}\right)^{2}}{2}} d x=\int_{-\infty}^{\infty} \frac{1}{b \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-a}{b}\right)^{2}+t x} d x=\int_{-\infty}^{\infty} \frac{1}{b \sqrt{2 \pi}} e^{t x-\frac{x^{2}-2 a x+a^{2}}{2 b^{2}}} d x$
$M(t)=\int_{-\infty}^{\infty} \frac{1}{b \sqrt{2 \pi}} e^{-\frac{2 b^{2}\left(x+x^{2}-2 a x+a^{2}\right.}{2 b^{2}}} d x=\int_{-\infty}^{\infty} \frac{1}{b \sqrt{2 \pi}} e^{-\frac{x^{2}-\left(2 b^{2} t+2 a\right) x+a^{2}}{2 b^{2}}} d x \quad \begin{aligned} & \text { Now complete the square } \\ & \left(\frac{2 b^{2} t+2 a}{2}\right)^{2}=\left(b^{2} t+a\right)^{2}\end{aligned}$
$M(t)=\int_{-\infty}^{\infty} \frac{1}{b \sqrt{2 \pi}} e^{-\frac{x^{2}-\left(2 b^{2} t+2 a\right) x+\left(b^{2} t+a\right)^{2}-\left(b^{2} t+a\right)^{2}+a^{2}}{2 b^{2}}} d x=\int_{-\infty}^{\infty} \frac{1}{b \sqrt{2 \pi}} e^{-\frac{\left(x-\left(b^{2} t+a\right)\right)^{2}-\left(b^{2} t+a\right)^{2}+a^{2}}{2 b^{2}}} d x$
$M(t)=e^{\frac{\left(b^{2} t+a\right)^{2}-a^{2}}{2 b^{2}}} \int_{-\infty}^{\infty} \frac{1}{\left.b \sqrt{2 \pi} e^{-\frac{\left(x-\left(b^{2} t+a\right)\right)^{2}}{2 b^{2}}} d x=e^{\frac{\left(b^{2} t+a\right)^{2}-a^{2}}{2 b^{2}}}=e^{\frac{\left(b^{2} t+a-a\right)\left(b^{2} t+a+a\right)}{2 b^{2}}}\right)}$

$$
M(t)=e^{\frac{\left(b^{2} t\right)\left(b^{2} t+a+a\right)}{2 b^{2}}}=e^{\frac{b^{4} t^{2}+2 a b^{2} t}{2 b^{2}}}=e^{\frac{b^{2} t^{2}}{2}+a t} \quad \text { Hence, } \quad M(t)=e^{\frac{b^{2} t^{2}}{2}+a t}
$$

Now, we would like to find a and b. Work for the derivative, $M^{\prime}(t)$. Let
$y=e^{\frac{b^{2} t^{2}}{2}+a t}$ and $u=\frac{b^{2} t^{2}}{2}+a t$ then $\mathrm{y}=\mathrm{e}^{\mathrm{u}}$.
$\frac{d y}{d t}=\frac{d y}{d u} \cdot \frac{d u}{d t}=\left(e^{u}\right) \cdot\left(a+b^{2} t\right)=\left(e^{\frac{b^{2} t^{2}}{2}+a t}\right)\left(a+b^{2} t\right)=M(t)\left(a+b^{2} t\right)$.
$M^{\prime}(t)=\left.M(t)\left(a+b^{2} t\right)\right|_{t=0}=a . \quad$ Since, $\mu=M^{\prime}(0)=a \quad \Rightarrow a=\mu$.
$M^{\prime \prime}(t)=M(t)\left(b^{2}\right)+\left.M(t)\left(a+b^{2} t\right)^{2}\right|_{t=0}=a^{2}+b^{2}$.
Since, $\sigma^{2}=M^{\prime \prime}(0)-\left(M^{\prime}(0)\right)^{2}=a^{2}+b^{2}-a^{2}=b^{2} \Rightarrow b^{2}=\sigma^{2}$.
Now, the probability density function, pdf, and the mgf can be written in terms of μ and σ.

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}} ; \text { where }-\infty<x<\infty \quad \text { and } M(t)=e^{\frac{\sigma^{2} t^{2}}{2}+\mu t}
$$

If $X \sim N\left(\mu=0, \sigma^{2}=1\right)$ then $f(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}$; where $-\infty<x<\infty$ and it's called the standard normal distribution.

Properties of the Normal distribution:

1. Symmetric about μ.
2. Has the maximum at $x=\mu$ and is $\frac{1}{\sigma \sqrt{2 \pi}}$.
3. The points at $x=\mu \pm \sigma$ are points of inflection.

Theorem 0: If the random variable $X \sim N\left(\mu, \sigma^{2}\right)$, then the random variable $W=\frac{X-\mu}{\sigma}$ has a normal distribution with $\mu=0$ and $\sigma=1$; i.e $W \sim N(0,1)$.

Proof: $G(W)=P(W \leq w)=P\left(\frac{X-\mu}{\sigma} \leq w\right)=P(X \leq \sigma w+\mu)=\int_{-\infty}^{\sigma w+\mu} \frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}} d x$.

$$
g(w)=G^{\prime}(W)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{\sigma w+\mu-\mu}{\sigma}\right)^{2}} \cdot \frac{d}{d w}(\sigma w+\mu)-0=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}(w)^{2}} \cdot \sigma=\frac{1}{\sqrt{2 \pi}} e^{-\frac{w^{2}}{2}}
$$

Hence, $g(w)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{w^{2}}{2}} ;-\infty<w<\infty$ and $W \sim N(0,1)$.

If the random variable $X \sim N\left(\mu, \sigma^{2}\right)$, then $P\left(X=c_{1}\right)=0$ since X is a continuous random variable.

$$
P\left(c_{1} \leq X \leq c_{2}\right)=P\left(X \leq c_{2}\right)-P\left(X \leq c_{1}\right)=P\left(W \leq \frac{c_{2}-\mu}{\sigma}\right)-P\left(W \leq \frac{c_{1}-\mu}{\sigma}\right)
$$

Example: If $X \sim N(2,25)$, compute $P(0 \leq X \leq 10)$.
$P(0 \leq X \leq 10)=P(X \leq 10)-P(X \leq 0)=P\left(W \leq \frac{10-2}{5}\right)-P\left(W \leq \frac{0-2}{5}\right)$
$P(0 \leq X \leq 10)=P(W \leq 1.6)-P(W \leq-0.4)=0.945-0.345=0.60$

Example: Compute $P(\mu-2 \sigma \leq X \leq \mu+2 \sigma)$.

$$
\begin{aligned}
& P(\mu-2 \sigma \leq X \leq \mu+2 \sigma)=P\left(\frac{\mu-2 \sigma-\mu}{\sigma} \leq W \leq \frac{\mu+2 \sigma-\mu}{\sigma}\right)=P(-2 \leq W \leq 2) \\
& =P(W \leq 2)-P(W \leq-2)=0.977-.023=0.954
\end{aligned}
$$

Example: Suppose that 10 percent of the probability distribution that is $N\left(\mu, \sigma^{2}\right)$ is below 60 and that 5 percent is above 90 . Find μ and σ.

We are going to need two equations since we have two unknowns.

1. $P(X \leq 60)=0.10 \Rightarrow P\left(W \leq \frac{60-\mu}{\sigma}\right)=0.10 \Rightarrow \frac{60-\mu}{\sigma}=-1.282$ from the table.
2. $P(X \geq 90)=0.05 \Rightarrow P\left(W \leq \frac{90-\mu}{\sigma}\right)=0.95 \Rightarrow \frac{60-\mu}{\sigma}=1.645$ from the table.

Now, solving for μ and σ, we found that $\mu=73.1$ and $\sigma=10.2$.

Theorem 1: If the random variable $X \sim N\left(\mu, \sigma^{2}\right)$, then the random variable $V=\left(\frac{X-\mu}{\sigma}\right)^{2}$ has a Chi-square distribution with $r=1$ degrees of freedom ; i.e $V \sim \mathcal{X}_{(r=1)}^{2}$.

Proof: Note that $V=W^{2}$ implying that $V>0$ and where $W=\frac{X-\mu}{\sigma}$; i.e $W \sim N(0,1)$. $G(V)=P(V \leq v)=P\left(W^{2} \leq v\right)=P(-\sqrt{v} \leq W \leq \sqrt{v})=2 P(0 \leq W \leq \sqrt{v})$ since the function is even. So, $G(V)=2 \int_{0}^{\sqrt{V}} \frac{1}{\sqrt{2 \pi}} e^{-\frac{w^{2}}{2}} d w ; V>0$
$g(v)=G^{\prime}(V)=2 \frac{1}{\sqrt{2 \pi}} e^{-\frac{(\sqrt{v})^{2}}{2}} \frac{d}{d v}(\sqrt{v})-0=\frac{\ell}{\sqrt{2 \pi}} e^{-\frac{v}{2}} \cdot \frac{1}{\& \sqrt{v}}=\frac{1}{\sqrt{\pi} \sqrt{2}} \frac{1}{\sqrt{v}} e^{-\frac{v}{2}}=\frac{1}{\sqrt{\pi} 2^{\frac{1}{2}}} v^{\frac{1}{2}-1} e^{-\frac{v}{2}}$

Since $g(v)$ is a pdf ; i.e $\int_{0}^{\infty} \frac{1}{\sqrt{\pi} 2^{\frac{1}{2}}} v^{\frac{1}{2}-1} e^{-\frac{v}{2}} d v=1 \quad$ implies that $\sqrt{\pi}=\Gamma\left(\frac{1}{2}\right)$.
Hence, $g(v)=\frac{1}{\Gamma\left(\frac{1}{2}\right) 2^{\frac{1}{2}}} v^{\frac{1}{2}-1} e^{-\frac{v}{2}} ; 0<v<\infty$; i.e $V \sim \chi_{(r=1)}^{2}$.

Homework: 3.4 : 5, 8, 10, 12 and 13 pp. 175-176.

