Section 1.2 Set Theory

Element of the set: If an element belongs to a set, it’s said to be an element of the
set. Generally a is an element of the set A, acA.

Example 1: Let C be the set of the first five positive integers.
C ={X;1,2,3,4,5} Thenl € C but ;2 C.
Example 2: Let C be the set of real numbers x for which —1 < X <1 .

C ={X; —1<x<1 } Then C is a one dimensional set.

Similarly, ifis C :{(x,y ); 0<x<1, 0<y<] }
then C is a two dimensional set.

Definition 1.2.1:  If every element of a set Cl 1s also an element of the C2 ,
then the set C1 is called a subset of the set C2 : C1 (- C2
If CIC C2 and C2 (- Cl then C1= C2 :

Example 3: Let C, ={x; 0,1,2} andC, ={x; —1< x < 2} then C,c C,.
Let C, ={x; 0,1,2} andC, ={x; 1< x < 2} then C, & C,.

Example 1.2.2p4:  Let C, :{(X, y); 0<x=y< 1} and

C, ={(x,y); 0<x<1, 0<y<1} thenC,cC,.

Definition 1.2.2:  Ifa set C has no element, C is called the null set. C= .

Definition 1.2.3:  The set of all elements that belong to at least one of the sets
Cl and C2 is called the union of Cl and C2 : Cl ) C2

For k sets Cl, Cz,C3, 9Ck—1 , Ck the union is
C,uC,uCu,..,uC UC,.

Do examples 1.2.3 through 1.2.7 page 4



Example 1.2.3./ Define the sets C; = {x : z = 8,9,10,11, or 11 < = < 12} and
Co={z:2=0,1,...,10}. Then

CQuUC, = {z:2=0,1,...,8,9,10,11, or 11 < x < 12}
= {z:2=0,1,...,8,9,100r11 <2<12}. ®
Example 1.2.Aeﬁne C, and C3 as in Example 1.2.1. Then CyUC; = C,. &
Example 1.2.5. Let Cy = ¢. Then C, UC, = C, for every set Cy. &
Example 1.2.6.'/For everyset C,CuC=C.m

Example 1.2.7. Let

Cpm {a;:kj_l 5:1;51}, k=123

Then UR ,Cr = {z: 0 < 2 < 1}. Note that the number zcro is not in this set, since
it is not in one of the sets C,,C2,C3,.... B

Definition 1.2.4:  The set of all elements that belong to each of the sets C1 and
C2 is called the intersection of C1 and C2 . Cl M C2

For k sets Cl, CZ,C3, 9Ck—1 R Ck the intersection is
C,nC,nC;n, ...,nC, ,NC,.

Do examples 1.2.8 through 1.2.12 pages 4-5



Example 1.2/ Let C; = {(0,0),(0,1),(1, 1)} and C2 = {(1,1),(1,2),(2,1)).
Then C;NCy = {(1,1)}. m .‘y_ r) X

.....

Example 1.2.9. Let C, = {(z,y): 0 <z -Ey <1l}and C = {(z,y): 1 <z y].
Then C) and C; have ho points in common and CinCy=¢. m

Example 1.2.10. Foreveryset C,CNC=CandCN¢=¢. m

(b)

Figure 1.2.1: (a) C) UG, and (b) Cy N Ca.
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Example 1.2.1"’2./Lct C, and C; represent the sets of points cnclosed, respectively,
by two intersecting ellipses. Then the sets Cy U Cy and C;_ﬂC_‘g are represented,
respectively, by the shaded regions in the Venn diagrams in Figure 1.2.1. ®

Definition 1.2.6: The set that consists of all elements of ~ that are not elements

C is called the complement of C . C® and ~°=0.

Do examples 1.2.16 and 1.2.17 page 6



Example 1.2.15. Let C be defined as in Example 1.2.13, and let the set C' = {0.1}.
The complement of C' (with respect to C) is C° = {2,3.4}. m

Example l.ﬁﬁ. Given C C C. Then CUC® =C,CNC* = ¢, CUC = C,
CNC=C,and (C$*=C. =

Example 1.2.\1{(DeMorgan’s Laws). A set of useful rules is known as DeMorgan’s
Laws. Let C denote a space and let C; CC, i =1,2. Then

(CinC)t = CiuCs (1.2.1)
(CLUG)® = CENCs. (1.2.2)

Venn Diagrams . Do example 1.2.12 on page 5. Also, can you use Venn diagrams

to demonstrate DeMorgan’s Law on example 1.2.17 on page 6
(see HW)?

Homework: 1, 2 (a,b,¢) , 3, 4 (Verify Only Using Venn Diagrams, Do Not Do Proof), and Son page 8.
Note: For 2c¢ find P for C and C°.



De Morgan’s Law

Proving (AN B)'=A"U B’
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De Morgan’s Law

Proving(AUB) =A"n B
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Section 1.2 Continues-Set Functions

Set Function: If the function is evaluated over an entire set of points is called
a set function. Functions that are evaluated at one point are
called point functions.

Example 1.2.18 p6: Let C be a one dimensional set and let Q(C)be equal to the number of points

in C which corresponds to positive integers. Then Q(C)is a function of the set
C. 1If C={X; 0<X<5}then Q(C)=4. If C={X; —2,—1}then
Q(C)=0. If C={X; =00 <X <6} then Q(C)=

Do example 1.2.19 page 6

Example 1.2.19. Let C be a set in two-dimensional space and let Q(C) be the
area of C if C has a finite area; otherwise, let Q(C) be undefined. Thus, if C =
{(z,y) : 2® + y* < 1}, then Q(C) = m; if C = {(0,0), (1,1),(0,1)}, then Q(C) =

if C={(z,y):0<z,0<y,24+y < l},thenQ(C)= 3. B

Notation: The symbol j x)dx will mean the ordinary (Riemann)

integral of f ( ) over a prescribed one dimensional set. ”C g(x, y)dxdy

Two dimensional set.
Similarly, > f(x)means the sum extended over all xeC. > > g(x,y) means the

sum extended over all (x,y)eC.

Do examples 1.2.21, 1.2.22, 1.2.23, and 1.2.24 pages 7-8 .

Example 1.2.2:.'1. Let C be a set in one-dimensional space and let Q(C) = . f(=),

where
- [(3) =1,23,...
(=) = { 0 elsewhere.

If C={2:0<z <3}, then

Q(C) S+ =E
Example 1.2.22. Let Q(C) = Y. f(x), where
-t z=0,1
/(@) { 0 elsewhere.
If C = {0}, then
et =1-_p;

0
Q) =Y r*(1-»)
=0
fC={2:1<2<2},thenQ(C)=f(1)=p. =



Example 1.2.23. Let C be a one-dimensional sct and let

Q(C) = / e *dx.
c
Thus, if C = {z : 0 < & < oo}, then s ;/
Q(C) = / e *dx =1,
0

if C={z:1<2 <2}, then

2

Q(C) = / e Tdr=c¢ ' -e?
1

if Cy ={z:0<2<1}and Co = {z:1 <z < 3}, then

3
QIC,UC) = [Oc_rd.'l:

1 3
- f e_md:r-i-/ e Tdx
0 1

= QC1)+Q(Cr). =

Example 1.2.%. Let C be a set in n-dimensional space and let

Q(C)=/---/d:r1d:c2---d:cn.
(04

IfC = {(z1,22,...,20): 021 <22 <+ ST, < 1}, then

1 In I3 I2
Q(C) - // f / d$1d$2"'d35n—1d$n_/
0 JO 0 0 i
1

=) i
n! |

wheren! =n(n—-1)-.-3:2-1. =

Homework: 10, 11 ) 12, 13, and 15 on pages 9-10 .
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/ERTING COORDINATES

Just as we needed to convert between rectangular and polar coordinates in 2-space, so we
will need to be able to convert between rectangular, cylindrical, and spherical coordinates

in 3-space. Table 13.8.1 provides formulas for making these conversions.

Table 13.8.1

e QONVERSION =~ | =

—

SRR, FORMULAS RESTRICTIONS

NCylindrical to rectangular
Rectangular (o cylindrical

2=z > ( =

(r.6,2) > (x,3,2) | x=rcosh, y=rsin o,
2= (rn6,2) | r=vVxl+y’, tanb=y/x, z=¢

| Spherical to cylindrical (P6,¢) > (r,0,2) | r=psind, 6=6, z=pcos¢ lai%ziﬂ?
| CYlindrical tospherical  ~ (n0.2) = (p.6,¢) | p=Vri+22 020, tang =r/z | 0sésa

F tangular to spherical

|_Spherical to rectangular
——

(7 8. d) = (x. y,2) x=psindcos b, y=psingsind, 5_?—_.5316363“.? }_f :l'f-‘-‘- 4
5.2 =0 | p=Vxi+y+ 22 120 0 = y/x, cos = zNaZ +y2 4 o2 I ‘f

f,‘,,¢

:
‘AL
fx,v.2)
& (r,8,2)
4 z 2'
= (r. 6.0)
%
P (@)
(p,0,d)
f‘p{(r.f-‘.zl

The diagrams in Figure 13.8.3 will help you to understand how the formulas in Ta-
ble 13.8.1 are derived. For example, part (a) of the figure shows that in converting between
rectangular coordinates (x, y, z) and cylindrical coordinates (r. 8, z), we can interpret (r, 6)
as polar coordinates of (x, y). Thus, the polar-to-rectangular and rectangular-to-polar con-
version formulas (1) and (2) of Section 12.1 provide the conversion formulas between
rectangular and cylindrical coordinates in the table.

Part (b) of Figure 13.8.3 suggests that the spherical coordinates (p, 6., ¢) of a point P
can be converted to cylindrical coordinates (r, 8, z) by the conversion formulas

r=psing, 6=6, z=pcos¢p ¢))

Moreover, since the cylindrical coordinates (r, , 2) of P can be converted to rectangular
coordinates (x, y, z) by the conversion formulas

X = rcosd, y%rsin&. =z ()

we can obtain direct conversion formulas from spherical coordinates to rectangular coordi-
nates by substituting (1) in (2). This yields :

X = psingcosf, y=psingsing, z=pcose (3)
The other conversion formulas in Table 13.8.1 are left as exercises.

Example 1

(2) Find the rectangular coordinates of the point with cylindrical coordinates
(r6,2) =(4,n/3,-3)

(b) Find the rectangular coordinates of the point with spherical coordinates
(0.6,¢) = (4, 7/3, n/4)



