Sample Questions to the Final Exam in Math 1111—Chapter 4

Section 4.1

1. $\$ 1500$ is invested at an annual rate of 8% compounded quarterly. What is the balance after 5 years?
$B=p\left(1+\frac{r}{n}\right)^{n t}$
a. $\$ 1624.67$
b. $\$ 2237.74$
c. $\$ 2228.92$
d. $\$ 2226.04$
e. None of these
2. Determine the amount of money that should be invested at an annual rate of 8% compounded quarterly to produce a final balance of $\$ 20,000$ in 10 years. $\quad B=p\left(1+\frac{r}{n}\right)^{n t}$
a. $\$ 16,406.97$
b. $\$ 9057.81$
c. $\$ 18,463.80$
d. $\$ 9081.26$
e. None of these
3. $\$ 3500$ is invested at a rate of $41 / 2 \%$ compounded continuously. What is the balance at the end of 10 years? $B=P e^{r t}$
a. $\$ 315,059.96$
b. $\$ 5472.45$
c. $\$ 5221.39$
d. $\$ 5489.09$
e. None of these
4. Match the graph with the correct function.
a. $y=3^{x-1}$
b. $y=3^{x}-1$
c. $y=3^{1-x}$
d. $y=3^{-x}-1$
e. None of these
5. Match the graph with the correct function.
a. $4^{\mathrm{x}}+1$
b. $4^{x}+2$
c. $4^{-x}+1$
$d .4^{-x}+2$

Section 4.2

1. Evaluate: $\log _{a}\left(\frac{1}{a}\right)$.
a. 1

b. -1

c.a $\quad d . \frac{1}{a}$
e. None of these
2. Write in logarithmic form: $4^{3}=64$.
a. $4 \log 3=64$
b. $\log _{4} 64=3$
c. $\log _{3} 4=64$
d. $\log _{3} 64=4$
e. None of these
3. Write in exponential form: $\log _{b} 7=13$.
a. $7^{13}=b$
b. $b^{13}=7$
$c . b^{7}=13$
$d .7^{b}=13$
e. None of these
4. Find the domain of the function: $f(x)=3 \log (5 x-2)$.
a. $(-\infty, \infty)$
b. $(0, \infty)$
c. $\left(\frac{2}{5}, \infty\right)$
d. $(.064, \infty)$
e. None of these
5. What is the vertical asymptote for $f(x)=\log _{2} x$?
a. $\mathrm{x}=2$
b. $x=0$
c. $y=0$
d. $y=2$
e. None of these
6. What is the horizontal asymptote for $f(x)=2^{x}$?
a. $x=2$
b. $x=0$
c. $y=0$
$d . y=2$
e. None of these
7. Match the graph with the correct function.
a. $\mathrm{f}(x)=3^{x}$
b. $f(x)=\log _{3} x$
c. $f(x)=3^{-x}$
d. $f(x)=3 \log x$
e. None of thes

8. What is $f^{-1}(x)$, if $f(x)=4^{x}$?
a. $\mathrm{f}^{-1}(x)=\frac{1}{4^{x}}$
b. $f^{-1}(x)=\log _{4} x$
c. $f^{-1}(x)=4^{-x}$
d. $f^{-1}(x)=\log _{x} 4$
e. None of these
9. Simplify: $\log _{2}\left(\frac{1}{16}\right)$.
a. 4
b. -4
c. 8
d. $\frac{1}{2}$
e. None of these

Section 4.3

1. Identify the expression that is equivalent to $\log _{2} 7$.
a. $\frac{\log 2}{\log 7}$
b. $\frac{\ln 2}{\ln 7}$
c. $\frac{\ln 7}{\ln 2}$
d. $\log 7-\log 2$
e. None of these
2. Evaluate $\log _{4} 7$ to 4 decimal places.
a. . 2430
b. . 5596
c. . 7124
d. 1.4037
e. None of these
3. Which of the choices below is equivalent to $\log _{b}\left(\frac{x^{3} y^{2}}{\sqrt{w}}\right)$?
a. $\mathrm{x}^{3}+y^{3}-\sqrt{w} \quad$ b. $\frac{1}{3} \log _{b} x+\frac{1}{2} \log _{b} y-2 \log _{b} w \quad c .3 \log _{b} x+2 \log _{b} y-\frac{1}{2} \log _{b} w \quad$ d. $\frac{3 \log _{b} x+2 \log _{b} y}{\frac{1}{2} \log _{b} w} \quad$ e. None of these
4. Write as a logarithm of a single quantity: $\frac{1}{4} \log _{b} 16-2 \log _{b} 5+\log _{b} 7$.
a. $\frac{14}{25}$
b. $\log _{b} \frac{2}{175}$
c. 1
d. $\log _{b} \frac{14}{25}$
e. None of these
5. Evaluate $\log _{a} 24$, given that $\log _{a} 2=0.4307$ and $\log _{a} 3=0.6826$.
a. 0.8820
b. 1.9747
c. 0.2940
d. 1.1133
e. None of these
6. Simplify: $\ln \sqrt[4]{e^{3} x}$.
a. $\frac{3}{4}+\frac{1}{4} \ln x$
b. $\frac{3}{4}+\ln \frac{x}{4}$
c. $\frac{3 e}{4}+\frac{1}{4} \ln x$
d. $\frac{3 e}{4}+\frac{1}{4} \ln \frac{x}{4}$
e. None of these

Section 4.4

1. Solve for $\mathrm{x}: 3^{2 x}=81$.
a. 13.5
b. $\frac{1}{4}$
c. 4
d. 2
e. None of these
2. \quad Solve for $\mathrm{x}: \ln e^{2 x+1}=9$.
a. $\frac{-1+\ln 9}{2}$
b. $\frac{9}{2 \ln e}-\frac{1}{2}$
c. 23
d. 4
e. None of these
3. Solve for t: $e^{-.0097 t}=12$.
a. $-256.1759 \quad$ b. $-1237.1134 \quad$ c. $16,778,844.47 \quad d .-2.5886 \quad e$. None of these
4. Solve for $\mathrm{x}: \ln (7-x)+\ln (3 x+5)=\ln (24 x)$.
a. $\frac{6}{11}$
b. $\frac{7}{3}$
c. $\frac{7}{3},-5$
d. $\frac{6}{11}, 5$
e. None of these
5. Solve for $\mathrm{x}: \log (7-x)-\log (3 x+2)=1$.
a. $\frac{19}{31}$
b. $-\frac{13}{31}$
c. $-\frac{27}{29} \quad$ d. $\frac{9}{4}$
e. None of these
6. Solve for $\mathrm{x}: \log _{4} x=-1$.
a. $x=-4$
b. $x=-1$
c. $x=-\frac{1}{4}$
d. $x=\frac{1}{4}$
e. None of these

Section 4.5

1. Determine the principal that must be invested at an annual rate of 8% compounded quarterly so that the balance in 40 years will be $\$ 200,000 . B=P\left(1+\frac{r}{n}\right)^{n t}$
a. \$90,578.10
b. $\$ 47,539.00$
c. $\$ 12,416.00$
d. $\$ 8414.00$
e. None of these
2. An initial deposit of $\$ 3000$ is made in a savings account for which the interest is compounded continuously. The balance will double in 7 years. What is the annual rate of interest for this account?
$B=P e^{r t}$
a. 4.3%
b. 6.2%
c. 8.1%
d. 9.9%
e. None of these
3. Find the number of years required for a $\$ 2000$ investment to triple at an 8% interest rate compounded continuously. $B=P e^{r t}$
a. 12.6
b. 13.7
c. 11.2
d. 15.1
e. None of these
