ANOVA-One Way Analysis of Variance

One-Way Analysis of Variance (ANOVA) is an extension of hypothesis testing for two population means using the t-distribution. The ANOVA allows us to compare more than two populations means, if the following two conditions are satisfied.

- 1. The populations are normally distributed.
- 2. The populations' variances are all equal $(\sigma_1^2 = \sigma_2^2 = \sigma_3^2 = ... = \sigma_n^2)$.

When you do your project on ANOVA you will have to use Minitab to check condition 1 and the rule of thumb for the equality of variance to check condition 2.

The hypothesis testing for the equality of the means is given below.

Step 1.	$H_0: \mu_1 = \mu_2 = \mu_3 = \dots = \mu_n$ $H_a: At \ least \ one \ mean \ is \ different$
Step 2.	Test statistic: F (Note: This value comes from the ANOVA table)
Step 3.	Reject Ho if $F > F_{\nu_1,\nu_2;\alpha}$. OR If the p-value $< \alpha$. (Note: we are going to use the p-value)
Step 4.	Conclusion.

Note: If we fail to reject H_o we conclude that all the means are equal. If we reject H_o we have to find out which mean or means are different. We have to do pair-wise comparison on the means. This work will be done in Minitab.

Example: We would like to compare the average time that it takes a fire station to respond (the time it takes the fire truck to leave the station) to a phone call. There are four different fire stations in town. The following data was provided over a week's period. Is there a significant difference among the average response time of these four fire stations? Test it at $\alpha = 0.05$.

Station 1	Station 2	Station 3	Station 4
12 min	14 min	19 min	24 min
18 min	12 min	17 min	34 min
	13 min	21 min	

Use Python to do the Hypothesis Testing.

```
Python Code To Do Analysis of Variance
import pandas as pd
print()
print()
#Read the file (replace 'your file.csv' with the actual filename)
df = pd.read excel('Firestations.xlsx')
print(df)
print()
print()
from statsmodels.formula.api import ols
import statsmodels.api as sm
# Perform ANOVA
model = ols('Stations ~ Time', data=df).fit()
anova table = sm.stats.anova lm(model, typ=2)
# Print the ANOVA table
print(anova table)
print()
print()
# Assuming 'df' is your DataFrame with 'dependent variable' and
'independent variable' columns
means = df.groupby('Stations')['Time'].mean()
import matplotlib.pyplot as plt
plt.plot(means.index, means.values, marker='o', linestyle='-')
plt.xlabel('Independent Variable')
plt.ylabel('Mean of Dependent Variable')
plt.title('Mean Plot for ANOVA')
plt.show()
print()
print()
print(means)
print()
# Perform Tukey's HSD post-hoc test
from statsmodels.stats.multicomp import pairwise tukeyhsd
tukey result = pairwise tukeyhsd(df['Time'], df['Stations'], alpha=0.05)
print(tukey result)
```

Time	Stati	ons			
0	12	1			
1	18	1			
2	14	2			
3	12	2			
4	13	2			
5	19	3			
6	17	3			
7	21	3			
8	24	4			
9	34	4			
			ਕ ਦ		
		sum_sq	al	Ľ	PR(>F)
Time	2	6.276544	1.0	11.888927	<mark>0.00872</mark>
Resi	dual	4.223456	8.0	NaN	NaN

28 26 Mean of Dependent Variable 24 22 20 18 16 14 2.0 2.5 3. Independent Variable 1.5 3.5 1.0 3.0 4.0

Mean Plot for ANOVA

Stations

1	15.0
2	13.0
3	19.0
4	29.0

Name: Time, dtype: float64

Please Note: The pair-comparison below are done on group2 group1 Multiple Comparison of Means - Tukey HSD, FWER=0.05 _____ group1group2 meandiff p-adj lower reject upper _____ -13.3939 9.3939 1 2 -2.0 0.926 $False \Rightarrow \mu_2 = \mu_1$ 3 1 4.0 0.6404 -7.3939 15.3939 $False \Rightarrow \mu_3 = \mu_1$ 1.5186 26.4814 1 4 14.0 0.0311 $True \Rightarrow \mu_A > \mu_B$ 2 3 6.0 0.2726 -4.191 16.191 $False \Rightarrow \mu_3 = \mu_2$ 2 4 16.0 0.0112 4.6061 27.3939 $True \Rightarrow \mu_{A} > \mu$ 3 10.0 0.0822 -1.3939 21.39394 False $\Rightarrow \mu_{\Lambda}$ _____

Homework: 12.63, and 12.65 pages 693-694.

Note: Use Python to do Hypothesis testing and draw a conclusion only.