Chapter 7

Section 7.1 t-Distribution $(n<30)$

Summary: C.L.T. : If the random sample of size $n \geq 30$ comes from an unknown population with mean μ and S.D. σ where σ is known or unknown, then $\bar{X} \sim N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$. Note: The hypothesis testing and confidence interval are built using Z-distribution.

Question: What is the distribution of \bar{X}, if the population is unknown and the sample size n is less than $30 ;(n<30)$?
Answer: Under this case we don't know the distribution of the sample mean \bar{X}. This case can be handled under Non-parametric statistic.

Question: What is the distribution of \bar{X}, if the population is Normal, meaning $X \sim N(\mu, \sigma)$ but σ is Unknown and the sample size n is less than 30; ($n<30$)?
Answer: If the population is Normal; $X \sim N(\mu, \sigma)$, and σ is unknown and $n<30$ then $\bar{X} \sim t_{n-1}$ (t-distribution) with $\mathrm{n}-1$ degrees of freedom. Note: The hypothesis testing and confidence interval are built using tdistribution.

The t -distribution is a family of curves. The curves look like the standard normal distribution but are not the same. Each curve is identified by the number of degrees of freedom. As the degrees of freedom get larger the t-distribution is approaching the standard normal curve.

	Upper-tail probability p (This table gives probabilities to the right of t)											
df	. 25	. 20	. 15	. 10	. 05	. 025	. 02	. 01	. 005	. 0025	. 001	. 0005
1	1.000	1.376	1.963	3.078	6.314	12.71	15.89	31.82	63.66	127.3	318.3	636.6
2	0.816	1.061	1.386	1.886	2.920	4.303	4.849	6.965	9.925	14.09	22.33	31.60
3	0.765	0.978	1.250	1.638	2.353	3.182	3.482	4.541	5.841	7.453	10.21	12.92
4	0.741	0.941	1.190	1.533	2.132	2.776	2.999	3.747	4.604	5.598	7.173	8.610
5	0.727	0.920	1.156	1.476	2.015	2.571	2.757	3.365	4.032	4.773	5.893	6.869
6	0.718	0.906	1.134	1.440	1.943	2.447	2.612	3.143	3.707	4.317	5.208	5.959
7	0.711	0.896	1.119	1.415	1.895	2.365	2.517	2.998	3.499	4.029	4.785	5.408
8	0.706	0.889	1.108	1.397	1.860	2.306	2.449	2.896	3.355	3.833	4.501	5.041
9	0.703	0.883	1.100	1.383	1.833	2.262	2.398	2.821	3.250	3.690	4.297	4.781
10	0.700	0.879	1.093	1.372	1.812	2.228	2.359	2.764	3.169	3.581	4.144	4.587
11	0.697	0.876	1.088	1.363	1.796	2.201	2.328	2.718	3.106	3.497	4.025	4.437
12	0.695	0.873	1.083	1.356	1.782	2.179	2.303	2.681	3.055	3.428	3.930	4.318
13	0.694	0.870	1.079	1.350	1.771	2.160	2.282	2.650	3.012	3.372	3.852	4.221
14	0.692	0.868	1.076	1.345	1.761	2.145	2.264	2.624	2.977	3.326	3.787	4.140
15	0.691	0.866	1.074	1.341	1.753	2.131	2.249	2.602	2.947	3.286	3.733	4.073
16	0.690	0.865	1.071	1.337	1.746	2.120	2.235	2.583	2.921	3.252	3.686	4.015
17	0.689	0.863	1.069	1.333	1.740	2.110	2.224	2.567	2.898	3.222	3.646	3.965
18	0.688	0.862	1.067	1.330	1.734	2.101	2.214	2.552	2.878	3.197	3.611	3.922
19	0.688	0.861	1.066	1.328	1.729	2.093	2.205	2.539	2.861	3.174	3.579	3.883
20	0.687	0.860	1.064	1.325	1.725	2.086	2.197	2.528	2.845	3.153	3.552	3.850
21	0.686	0.859	1.063	1.323	1.721	2.080	2.189	2.518	2.831	3.135	3.527	3.819
22	0.686	0.858	1.061	1.321	1.717	2.074	2.183	2.508	2.819	3.119	3.505	3.792
23	0.685	0.858	1.060	1.319	1.714	2.069	2.177	2.500	2.807	3.104	3.485	3.768
24	0.685	0.857	1.059	1.318	1.711	2.064	2.172	2.492	2.797	3.091	3.467	3.745
25	0.684	0.856	1.058	1.316	1.708	2.060	2.167	2.485	2.787	3.078	3.450	3.725
26	0.684	0.856	1.058	1.315	1.706	2.056	2.162	2.479	2.779	3.067	3.435	3.707
27	0.684	0.855	1.057	1.314	1.703	2.052	2.158	2.473	2.771	3.057	3.421	3.690
28	0.683	0.855	1.056	1.313	1.701	2.048	2.154	2.467	2.763	3.047	3.408	3.674
29	0.683	0.854	1.055	1.311	1.699	2.045	2.150	2.462	2.756	3.038	3.396	3.659
30	0.683	0.854	1.055	1.310	1.697	2.042	2.147	2.457	2.750	3.030	3.385	3.646
40	0.681	0.851	1.050	1.303	1.684	2.021	2.123	2.423	2.704	2.971	3.307	3.551
50	0.679	0.849	1.047	1.299	1.676	2.009	2.109	2.403	2.678	2.937	3.261	3.496
60	0.679	0.848	1.045	1.296	1.671	2.000	2.099	2.390	2.660	2.915	3.232	3.460
80	0.678	0.846	1.043	1.292	1.664	1.990	2.088	2.374	2.639	2.887	3.195	3.416
100	0.677	0.845	1.042	1.290	1.660	1.984	2.081	2.364	2.626	2.871	3.174	3.390
1000	0.675	0.842	1.037	1.282	1.646	1.962	2.056	2.330	2.581	2.813	3.098	3.300
z^{*}	0.674	0.841	1.036	1.282	1.645	1.960	2.054	2.326	2.576	2.807	3.091	3.291
	50\%	60\%	70\%	80\%	90\%	95\%	96\%	98\%	99\%	99.5\%	99.8\%	99.9\%
						Conf	nce lev					

Interval Estimation of a Population Mean. (Small Sample Case, $n<30$)
Confidence Interval: $\bar{X} \pm t_{n-1 ; \frac{\pi}{2}} \frac{s}{\sqrt{n}}$ Note: Since σ is unknown we used S .
Example 1: Assume that the duration time of long-distance telephone calls is Normally distributed. A sample of 20 telephone calls resulted in a sample mean of $\bar{X}=12.5$ minutes and a sample standard deviation of $\mathbf{s}=4.1$ minutes. Develop 95% and 98% confidence interval estimates of the mean duration time for the population of long-distance telephone calls.
(a) 95% C.I., $1-\alpha=0.95, \alpha=0.05, \frac{\alpha}{2}=0.025, \mathrm{t}_{\mathrm{n}-1, \frac{\alpha}{2}} \Rightarrow \mathrm{t}_{19,925}=2.093$

$$
\bar{X} \pm t_{n-1 \frac{\alpha}{2}} \frac{s}{\sqrt{n}} \Rightarrow 12.5 \pm(2.093) \frac{4.1}{\sqrt{20}} \Rightarrow 12.5 \pm 1.92 \Rightarrow(10.58,14.42)
$$

Thus, we are 95% confident that the true population mean is 10.58 to 14.42 minutes per telephone call.
(b) 98% C.I., $1-\alpha=0.98, \quad \alpha=0.02, \frac{\alpha}{2}=0.01, \quad \mathrm{t}_{\mathrm{n}-1 \frac{\alpha}{2}} \Rightarrow \mathrm{t}_{199001}=2.539$

$$
\bar{X} \pm t_{n-1 ; \frac{\beta}{2}} \frac{s}{\sqrt{n}} \Rightarrow 12.5 \pm(2.539) \frac{4.1}{\sqrt{20}} \Rightarrow 12.5 \pm 2.33 \Rightarrow(10.17,14.83)
$$

Thus, we are 98% confident that the true population mean is 10.17 to 14.83 minutes per telephone call.

Hypothesis Testing

General form of Hypothesis Testing

Step 1	$\begin{array}{ll} \text { Case1. } & H_{0}: \mu \geq \mu_{0} \\ & H_{a}: \mu<\mu_{0} \end{array}$	$\begin{array}{ll} \hline \text { Case 2. } & H_{0}: \mu \leq \mu_{0} \\ & H_{a}: \mu>\mu_{0} \end{array}$	$\begin{array}{ll} \hline \text { Case 3. } & H_{0}: \mu=\mu_{0} \\ & H_{a}: \mu \neq \mu_{0} \end{array}$
Step 2	$t_{n-1}=\frac{\bar{X}-\mu_{0}}{\frac{s}{\sqrt{n}}}$	$t_{n-1}=\frac{\bar{X}-\mu_{0}}{\frac{s}{\sqrt{n}}}$	$t_{n-1}=\frac{\bar{X}-\mu_{0}}{\frac{s}{\sqrt{n}}}$
Step 3	Reject H_{0} if $t_{n-1}<-t_{n-1 ; \alpha}$	Reject H_{0} if $t_{n-1}>t_{n-1 ; \alpha}$	Reject H_{0} if $\left\|t_{n-1}\right\|>t_{n-1 ; \frac{\alpha}{2}}$
Step 4	$\begin{array}{ll}\text { Conclusion: } & \text { We do not reject } H_{0} \text { and conclude that } \\ & \text { We reject } H_{0} \text { and conclude that }\end{array}$		

Example 2: The height of a particular plant is Normally distributed with mean of 28 inches. A new plant food is used on a sample of 12 plants. Results of the sample show a sample mean height of 29.4 inches and a sample standard deviation of 3 inches. Using $\alpha=0.10$, is there a reason to believe that the new plant food increases plant growth?

| 1. $H_{0}: \mu=28$ vs $H_{a}: \mu>28 \quad$ (Upper Tail Test $)$ |
| :--- | :--- |
| 2. Test Statistic: $t_{n-1}=\frac{\bar{X}-\mu_{0}}{\frac{s}{\sqrt{n}}} \Rightarrow t_{11}=\frac{29.4-28}{\frac{3}{\sqrt{12}}}=1.62$ |
| 3. Re ject H_{0} if $t_{n-1}>t_{n-1 ; \alpha} \Rightarrow t_{11}>t_{11 ; \alpha=0.10}=1.363$ |
| 4. Conclusion: Since $t_{11}=1.62>1.363$, we reject H_{0} and conclude
 that the mean plant height exceeds 28 inches when the new plant
 food is used. |

Example 3: It is estimated that a housewife with a husband and two children works an average of 55 hours or more per week on a household related activities. Shown below are the hours worked during a week for a sample of eight housewives:

$$
58, \quad 52, \quad 64, \quad 63, \quad 59, \quad 62, \quad 62, \quad 55 .
$$

Use $\alpha=.05$ to do the appropriate hypothesis testing if the wives want to prove to their husbands that they work more than 55 hours a week.

Begin by computing the following: $\bar{X}=59.38$ and $\mathrm{S}=4.21$.

1. $H_{0}: \mu=55$ vs $H_{a}: \mu>55$ (Upper Tail Test)
2. Test Statistic: $t_{n-1}=\frac{\bar{X}-\mu_{0}}{\frac{s}{\sqrt{n}}} \Rightarrow t_{7}=\frac{59.38-55}{\frac{4.21}{\sqrt{8}}}=2.94$
3. Re ject H_{0} if $t_{n-1}>t_{n-1 ; \alpha} \Rightarrow t_{7}>t_{7 ; \alpha=0.05}=1.895$
4. Conclusion: Since $t_{7}=2.94>1.895$, we reject H_{0} and conclude that the mean number of hours worked per week exceeds 55.

Homework: 7.15, 7.21 (a, d), 7.31, 7.32, 7.40, 7.44 pp. 426-431

Please Note:

1) Under the t-distribution do not compute the p-value even if the problem asks for it. If it's given to you use it.
2) In this homework if $n \geq 30$ use the C.L.T.; i.e. $\bar{X} \sim N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$.

Section 7.2 Comparing Two Population Means

In this section, we will compare the means of two populations. For example,
a. Does Advil fight pain better than Tylenol?
b. Does Longhorn Steakhouse have a longer wait than Outback Steakhouse?
c. Are men older than women when they graduate from college?
d. Are SAT scores higher after taking a preparation course than before?
e. Are the starting salaries for computer science majors higher than those of marketing majors?
C.L.T. : If random samples of sizes n_{1} and $n_{2}\left(n_{1} \geq 30\right.$ and $\left.n_{2} \geq 30\right)$ are drawn from two populations with means μ_{1} and μ_{2} and with standard deviations of σ_{1} and σ_{2}, respectively, then the sampling distribution of $\bar{X}_{1}-\bar{X}_{2}$ has the following properties:

1. $\mathrm{E}\left(\bar{X}_{1}-\bar{X}_{2}\right)=\mu_{1}-\mu_{2}$
2. $\operatorname{S.D}\left(\bar{X}_{1}-\bar{X}_{2}\right)=\quad \sigma_{\bar{X}_{1}-\bar{X}_{2}}=\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}$
3. $\bar{X}_{1}-\bar{X}_{2}$ is approximately normally distributed.

That is, $\quad \bar{X}_{1}-\bar{X}_{2} \sim \mathrm{~N}\left(\mu_{1}-\mu_{2}, \sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}\right)$
Note: 1. A C.I. for $\mu_{1}-\mu_{2}$ has the form: $\quad\left(\bar{X}_{1}-\bar{X}_{2}\right) \pm Z_{\frac{\alpha}{2}} \sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}$
2. If σ_{1} and σ_{2} are unknown, we will use S_{1} and S_{2} to estimate σ_{1} and σ_{2}, respectively.
That is the C. I. is $\left(\bar{X}_{1}-\bar{X}_{2}\right) \pm Z_{\frac{\alpha}{2}} \sqrt{\frac{s_{1_{1}^{2}}^{2}}{n_{1}}+\frac{S_{2}^{2}}{n_{2}}}$
Interval Estimation of $\mu_{1}-\mu_{2}$: Large-Sample Case. ($n_{1} \geq 30$ and $n_{2} \geq 30$)
A $(1-\alpha) \%$ C.I. for $\mu_{1}-\mu_{2}$ is $\left(\bar{X}_{1}-\bar{X}_{2}\right) \pm Z_{\frac{\alpha}{2}} \sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}$ or $\left(\bar{X}_{1}-\bar{X}_{2}\right) \pm Z_{\frac{\alpha}{2}} \sqrt{\frac{s_{1}^{2}}{m_{1}}+\frac{s_{2}^{2}}{n_{2}}}$
Note: If σ_{1} and σ_{2} are unknown, then we can use the sample S.D.'s, s_{1} and s_{2}.
Example 1: The Educational Testing Service conducted a study to investigate possible differences between the scores of males and females on the scholastic Aptitude Test (SAT) (Journal of Educational Measurement, Spring 1987). A random sample of 562 females and 852 males provided a sample mean SAT verbal score of $\bar{X}_{1}=547$ for the females and $\bar{X}_{2}=525$ for the males. The sample standard deviations were $s_{1}=\mathbf{8 3}$ for the females and $s_{2}=78$ for the males. Using a 95% confidence level, estimate the difference between the mean SAT verbal scores for the two populations.

95\% C.I., $1-\alpha=0.95, \quad \alpha=0.05, \quad \frac{\alpha}{2}=0.025, \quad Z_{\frac{\alpha}{2}} \Rightarrow Z_{0.025}=1.96$

$$
\left(\bar{X}_{1}-\bar{X}_{2}\right) \pm Z_{\frac{\alpha}{2}} \sqrt{\frac{S_{1}^{2}}{n_{1}}+\frac{S_{2}^{2}}{n_{2}}} \Rightarrow(547-525) \pm(1.96) \sqrt{\frac{83^{2}}{562}+\frac{78^{2}}{852}} \Rightarrow 22 \pm 8.63 \Rightarrow(13.37,30.63)
$$

We can be 95% confident that the mean verbal score of females is about 13.37 to 30.63 points higher than the mean verbal score for males.

Example 2: In a sample of 60 foreign similar size cars the average gas mileage was $\bar{X}_{1}=40$ and $s_{1}=9$. In a sample of 80 domestic similar size cars the average gas mileage was $\bar{X}_{2}=35$ and $s_{2}=10$. Give a 90% and 99% C.I. to estimate the difference in gas mileage between foreign and domestic cars.

Find a 90% and 99% confidence intervals.

$$
90 \% \Rightarrow(40-35) \pm(1.645) \sqrt{\frac{9^{2}}{60}+\frac{10^{2}}{80}} \Rightarrow(40-35) \pm(1.645)(1.6125) \Rightarrow 5 \pm 2.65 \Rightarrow(2.35 \text { to } 7.65)
$$

We can be 90% confident that the mean gas mileage of the foreign cars is 2.35 to 7.65 gallons higher than the mean gas mileage of the domestic cars.
$99 \% \Rightarrow(40-35) \pm(2.575) \sqrt{\frac{9^{2}}{60}+\frac{10^{2}}{80}} \Rightarrow(40-35) \pm(2.575)(1.6125) \Rightarrow 5 \pm 4.15 \Rightarrow(0.85$ to 9.15$)$
We can be 99% confident that the mean gas mileage of the foreign cars is 0.85 to 9.15 gallons higher than the mean gas mileage of the domestic cars.
As should be expected the 99% C.I. is wider than the 95% C.I. .

Interval Estimation of $\mu_{1}-\mu_{2}$: Small-Sample Case. ($n_{1}<30$ and $n_{2}<30$)
Since $n_{1}<30$ and $n_{2}<30$ the sampling distribution of $\bar{X}_{1}-\bar{X}_{2}$ has to be a tdistribution. We have two cases to consider

Case 1 ($n_{1}<30$ and $\left.n_{2}<30\right)$

1. Both populations must have Normal distributions; i.e. $\bar{X}_{1} \sim N\left(\mu_{1}, \sigma_{1}\right) \quad$ and $\quad \bar{X}_{2} \sim N\left(\mu_{2}, \sigma_{2}\right)$
2. The standard deviations of the two populations must be equal; i.e., $\sigma_{1}=\sigma_{2}=\sigma$, where σ is the standard deviation for both populations. Again, σ_{1} and σ_{2} are unknown.

$$
\text { Then }\left(\bar{X}_{1}-\bar{X}_{2}\right) \sim t_{n_{1}+n_{2}-2}
$$

$\sigma_{\bar{X}_{1}-\bar{X}_{2}}=\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}=\sqrt{\frac{\sigma^{2}}{n_{1}}+\frac{\sigma^{2}}{n_{2}}}=\sqrt{\sigma^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}$. NOTE: The variance, σ^{2}, will be unknown. We estimate σ^{2} using what we call the pooled variance, s_{p}^{2}. $s_{p}^{2}=\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2}$ Hence, $\sigma_{\bar{x}_{1}-\bar{X}_{2}}=\sqrt{s_{p}^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}$.
NOTE: Since $\left(\bar{X}_{1}-\bar{X}_{2}\right) \sim t_{n_{1}+n_{2}-2}$, the C.I. is given by

$$
\left(\bar{X}_{1}-\bar{X}_{2}\right) \pm t_{n_{1}+n_{2}-2 ; \frac{\alpha}{2}} \sqrt{s_{p}^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)} \quad \text { where } \quad s_{p}^{2}=\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2}
$$

Example 3. A survey of recent graduates with degrees in Marketing and Accounting revealed the following starting salaries in thousands of dollars.
Marketing: 24.6, 27.8, 25.8, 23.1, 25.2, 24.7, 26.1, 22.6, 23.8

$$
\left(n_{1}=9, \bar{X}_{1}=24.86 \text { and } s_{1}=1.60\right)
$$

Accounting: 26.7, 24.9, 27.1, 23.1, 27.5, 27.4, 24.9, 26.3, 28.9, 26.4,

$$
\text { 28.1, 29.7, 25.5, 24.9, } 28.5\left(n_{2}=15, \bar{X}_{2}=26.66 \text { and } s_{2}=1.79\right)
$$

Build a 96% C.I. for the mean difference in the starting salaries of Accounting and Marketing majors?

$$
\begin{aligned}
& s_{p}^{2}=\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2}=\frac{(9-1)(1.60)^{2}+(15-1)(1.79)^{2}}{9+15-2}=2.97 \\
& \left(\bar{X}_{1}-\bar{X}_{2}\right) \pm t_{n_{1}+n_{2}-2 ; \frac{\alpha}{2}} \sqrt{s_{p}^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)} \Rightarrow(24.86-26.66) \pm(2.183) \sqrt{2.97\left(\frac{1}{9}+\frac{1}{15}\right)} \\
& \Rightarrow-1.8 \pm(2.183)(0.727) \Rightarrow-1.8 \pm 1.59 \Rightarrow(-3.39,-0.21)
\end{aligned}
$$

We are 96% confident that the Marketing salaries are $\$ 210$ to $\$ 3,390$ lower than Accounting.

Case $2\left(n_{1}<30\right.$ and $\left.n_{2}<30\right)$

1. Both populations must have Normal distributions; i.e. $\bar{X}_{1} \sim N\left(\mu_{1}, \sigma_{1}\right) \quad$ and $\quad \bar{X}_{2} \sim N\left(\mu_{2}, \sigma_{2}\right)$
2. $\sigma_{1} \neq \sigma_{2}$
$\left(\bar{X}_{1}-\bar{X}_{2}\right) \sim t_{k} \quad$ where $k=\min \left(n_{1}-1, n_{2}-1\right) \quad$ and $\quad \sigma_{\bar{X}_{1}-\bar{X}_{2}}=\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}$

Confidence Interval

NOTE: $\operatorname{Since}\left(\bar{X}_{1}-\bar{X}_{2}\right) \sim t_{k}$, the C.I. is given by $\left(\bar{X}_{1}-\bar{X}_{2}\right) \pm t_{k ; \frac{\alpha}{2}} \sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}$
Example 4: Consider the following information about the average car speed in town for the teenagers, males and females.

$$
\begin{array}{lll}
\text { Males: } & n_{1}=22, & \bar{X}_{1}=51.48, \\
\text { Females }: & s_{1}=11.01 \\
n_{2}=23, & \bar{X}_{2}=41.52, & s_{2}=17.15
\end{array}
$$

Build a 95% C.I. for the difference of the two populations means.
$\left(\bar{X}_{1}-\bar{X}_{2}\right) \pm t_{k ; \frac{\alpha}{2}} \sqrt{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}} \Rightarrow(51.48-41.52) \pm t_{21 ; \frac{\alpha}{2}=0.25} \sqrt{\frac{(11.01)^{2}}{22}+\frac{(17.15)^{2}}{23}}$
$\Rightarrow 9.96 \pm(2.080)(4.308) \Rightarrow 9.96 \pm 8.96 \Rightarrow(1.0,18.92)$

We are 95% confident that the males drive in town 1 to 18.92 miles faster than the females.

Hypothesis Testing for the difference Between the Means of Two Populations

1) Large Sample Case. ($n_{1} \geq 30$ and $n_{2} \geq 30$)

General form of Hypothesis Testing

Step 1	$\begin{array}{ll} \text { Case1. } & H_{0}: \mu_{1}-\mu_{2}=0 \\ & H_{a}: \mu_{1}-\mu_{2}<0 \end{array}$	$\begin{array}{ll} \text { Case 2. } & H_{0}: \mu_{1}-\mu_{2}=0 \\ & H_{a}: \mu_{1}-\mu_{2}>0 \end{array}$	$\begin{array}{cc} \stackrel{\text { Case 3. }}{ } & H_{0}: \mu_{1}-\mu_{2}=0 \\ & H_{a}: \mu_{1}-\mu_{2} \neq 0 \end{array}$
Step 2	$Z^{*}=\frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}}$	$Z^{*}=\frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}}$	$Z^{*}=\frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}}$
Step 3	Re ject H_{0} if $Z^{*}<-Z_{\alpha}$	Re ject H_{0} if $Z^{*}>Z_{\alpha}$	Re ject H_{0} if $\left\|Z^{*}\right\|>Z_{\frac{\alpha}{2}}$
Step 4	$\begin{array}{ll}\text { Conclusion: } & \text { We do not reject } H_{0} \text { and conclude that } \\ & \text { We reject } H_{0} \text { and conclude that }\end{array}$		

NOTE: The \mathbf{P}-Value is another way of drawing a conclusion. The \mathbf{P}-Value is the probability of obtaining the test statistic under the assumption that the Null Hypothesis is true (H_{0} is true).

If the P-Value $\geq \alpha$, then we failed to reject H_{0}.
If the P-Value $<\alpha$, then we reject H_{0}.
That is, if the probability of obtaining the test statistic is greater than or equal to α, \bar{X} is not one of the extreme values but one that is close to μ.
Compute the P-Value: Let $Z^{*}=$ Test Statistic; That is $Z^{*}=Z=\frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}}$
Case 1: $P-$ Value $=P\left(Z<Z^{*}\right) \quad$ Case 2: $P-$ Value $=P\left(Z>Z^{*}\right) \quad$ Case $3: \quad P-$ Value $=2 P\left(Z<-\left|Z^{*}\right|\right)$

Example 1: A medical research study was conducted to determine if there is a difference between the effectiveness of two pain relief medicines used for headaches. Over a 6-month period, a sample of individuals one of the medicines, where as another sample of individuals used the other medicine. Data collected during the study showed the time required to receive pain relief.

Sample Size	$n_{1}=248$	$n_{2}=225$
Sample Mean	$\bar{X}_{1}=24.8$	$\bar{X}_{2}=26.1$
Sample S.D.	$s_{1}=3.3$	$s_{2}=4.2$

Let $\mu_{1}=$ mean pain relief time for medicine 1
Let $\mu_{2}=$ mean pain relief time for medicine 2

| 1. $H_{0}: \mu_{1}-\mu_{2}=0 \quad$ vs $\quad H_{a}: \mu_{1}-\mu_{2} \neq 0 \quad$ (Two Tail Test) |
| :--- | :--- |
| 2. $Z^{*}=\frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}}=\frac{(24.8-26.1)-0}{\sqrt{\frac{(3.3)^{2}}{248}+\frac{(4.2)^{2}}{225}}}=\frac{-1.3}{0.35}=-3.71$ |
| 3. Re ject H_{0} if $\left\|Z^{*}\right\|>Z_{\frac{\alpha}{2}}=Z_{0.025}=1.96$ |

4. Conclusion: Since $\left|Z^{*}\right|=3.71$ is greater than 1.96 , we reject H_{0} and conclude that there is significant difference between the mean pain relief times for the two medicines.
Note: P-Value $=2 \mathrm{P}\left(\mathrm{Z}<\mathrm{Z}^{*}\right)=2 P\left(Z<-\left|Z^{*}\right|\right)=2 \mathrm{P}(\mathrm{Z}<-3.71)=2(0)=0$ $\mathrm{P}-$ Value $=0<\alpha=0.05$. Therefore, we reject H_{0} and draw the same conclusion as in step 4 above.

Example 2: It has been suggested that college students learn more and obtain higher grades in small classes (40 students or less) compared to large classes (150 students or more). To test this claim, a university assigned a professor to teach a small class and a large class of the same course. At the end of the course students from the two classes were given the same final exam. Final grade differences for the two classes would provide a basis for testing the difference between the small class and large class situations. Letting μ_{1} denote the mean exam score for the population of students taking a small class and μ_{2} denote the mean exam score for the population of students taking a large class.

Sample Size	$n_{1}=35$	$n_{2}=170$
Sample Mean	$\bar{X}_{1}=74.2$	$\bar{X}_{2}=71.7$
Sample S.D.	$s_{1}=14$	$s_{2}=13$

1. $H_{0}: \mu_{1}-\mu_{2}=0$ vs $H_{a}: \mu_{1}-\mu_{2}>0$ (Upper Tail Test)
2. $Z^{*}=\frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}}=\frac{(74.2-71.7)-0}{\sqrt{\frac{(14)^{2}}{35}+\frac{(13)^{2}}{170}}}=\frac{2.5}{2.57}=0.97$
3. Re ject H_{0} if $Z^{*}>Z_{\alpha}=Z_{0.05}=1.645$
4. Conclusion: Since $Z^{*}=0.97$ is less than 1.645 , we fail to reject H_{0} and conclude that there is no evidence that students in small classes learn more.
Note: P-Value $=P\left(Z>Z^{*}\right)=1-\mathrm{P}(\mathrm{Z}<0.97)=1-0.834=0.166$
$\mathrm{P}-$ Value $=0.166>\alpha=0.05$. Therefore, we fail to reject H_{0} and draw the same conclusion as in step 4 above.
2) Small-Sample Case ($n_{1}<30$ and $n_{2}<30$)

General form of Hypothesis Testing

Step 1	$\begin{array}{ll} \text { Case1. } & H_{0}: \mu_{1}-\mu_{2}=0 \\ & H_{a}: \mu_{1}-\mu_{2}<0 \end{array}$	$\begin{array}{ll} \text { Case 2. } & H_{0}: \mu_{1}-\mu_{2}=0 \\ & H_{a}: \mu_{1}-\mu_{2}>0 \\ \hline \end{array}$	$\begin{array}{ll} \text { Case 3. } & H_{0}: \mu_{1}-\mu_{2}=0 \\ & H_{a}: \mu_{1}-\mu_{2} \neq 0 \end{array}$
Step 2	$t_{n_{1}+n_{2}-2}=\frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{s_{p}^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}} \text { where } s_{p}^{2}=\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2}$		
Step 3	ject H_{0} if $t_{n_{1}+n_{2}-2}<-t_{n_{1}+n_{2}-2 ; \alpha}$	Reject $H_{\text {, if }}$ if $t_{n_{1}+n_{2}-2}>t_{n_{1}+n_{2}-2 ; \alpha}$	Re ject H_{0} if $\left\|t_{n_{1}+n_{2}-2}\right\|>t_{n_{1}+n_{2}-2 ; \frac{2}{2}}$
Step 4	$\begin{array}{ll}\text { Conclusion: } & \text { We do not reject } H_{0} \text { and conclude that } \\ & \text { We reject } H_{0} \text { and conclude that }\end{array}$		

Example 3: Automobile gasoline mileage tests were conducted for similar sized foreign and domestic automobiles. Test the hypothesis that the mean number of miles per gallon is the same for foreign and domestic automobiles based on the following sample results. Use $\alpha=0.05$. Assume that the automobile gasoline mileage is normally distributed.

Sample Size	$n_{1}=8$	$n_{2}=10$
Sample Mean	$\bar{X}_{1}=36.5$	$\bar{X}_{2}=32.4$
Sample S.D.	$s_{1}=2.3$	$s_{2}=2.8$

Step 1	$H_{0}: \mu_{1}-\mu_{2}=0 \quad v s \quad H_{a}: \mu_{1}-\mu_{2} \neq 0$
Step 2	$t_{n_{1}+n_{2}-2}=\frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{s_{p}^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}=\frac{(36.5-32.4)-0}{\sqrt{6.72\left(\frac{1}{8}+\frac{1}{10}\right)}}=\frac{4.1}{1.23}=3.33$
	where $s_{p}^{2}=\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2}=\frac{(8-1)(2.3)^{2}+(10-1)(2.8)^{2}}{8+10-2}=6.72$ Step 3Re ject H_{0} if $\left\|t_{n_{1}+n_{2}-2}\right\|>t_{n_{1}+n_{2}-2 \cdot \frac{\sigma}{2}} \Rightarrow\left\|t_{16}\right\|>t_{16 ; 0.025}=2.12$
Step 4	Conclusion: \quad Since $3.33>2.12$, We reject H_{0} and conclude that there is a significant difference between the average gasoline mileage of the foreign and domestic cars.

Homework: 7.57, 7.69(b, c, d only), 7.74(c only), 7.76(b, c only), 7.78(a, b), 7.81, $7.83 \quad$ pp.455-459

NOTE: Use the Z-distribution when you can; i.e $n_{1} \geq 30$ and $n_{2} \geq 30$.
Also: If the exercise asks for the p-value, do not compute it under the t-distribution. You can compute it if you are using the Z-distribution

