Chapter 8

Section 8.1

We might be interested in

- the proportion of US males who have health insurance,
- the proportion of imported cars in the US,
- the proportion of Americans who have Type II diabetes,

Notations:

p: Population Proportion (the proportion of the entire population that has the specified attribute.)
$\hat{P}=\frac{x}{n}$: Sample Proportion (the proportion of a sample from the population that has the specified attribute.)

Example 1: A sample of 200 married couples selected from throughout the United States showed that for 84 of the couples, both the husband and wife held full-time jobs. Use the sample results to estimate the proportion of all married couples in the United States for which both the husband and wife hold full-time jobs. Solution. 0.42

The Sampling Distribution of the proportion

In selecting random samples of size n from a particular population with a proportion of p , the sampling distribution of the sample proportion \hat{P} approaches a normal distribution with mean of \mathbf{p} and the standard deviation of $\sigma_{\hat{p}}=\sqrt{\frac{p(1-p)}{n}}$ as the sample size becomes large; $\hat{P} \sim N\left(p, \sqrt{\frac{p(1-p)}{n}}\right)$. When is the sample size considered large? If $\mathrm{np} \geq 10$ and $\mathrm{n}(1-\mathrm{p}) \geq 10$
(1) If p is unknown, then $\sigma_{\hat{p}}=\sqrt{\frac{p(1-p)}{n}}$ is estimated by $\sigma_{\hat{p}}=\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$
(2) $\mathrm{A}(1-\alpha) \%$ C.I. for estimating p is $\hat{p} \pm Z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$

Example 2: A particular county in West Virginia has a 9\% unemployment rate. To monitor the unemployment rate in that county, a monthly survey of 800 individuals is conducted by a state agency.
(a) What is the sampling distribution of \hat{P} when a sample size of 800 is used?

$$
\text { Solution (a) } \hat{P} \sim \mathbf{N}(0.09,0.0101)
$$

Example 3. In a Roper Organizational poll of 2,000 adults, 1,280 have money in regular saving accounts. Find a 95% confidence interval for the true proportion of adults who have money in regular saving accounts.

Solution. $\hat{p}=\frac{x}{n}=\frac{1280}{2000}=0.64, \quad \mathrm{n}=2000$

$$
\begin{gathered}
\hat{p} \pm Z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \Rightarrow 0.64 \pm(1.96) \sqrt{\frac{0.64(1-0.64)}{2000}} \Rightarrow 0.64 \pm(1.96)(0.011) \\
\Rightarrow 0.64 \pm 0.022 \Rightarrow(0.618,0.662)
\end{gathered}
$$

We are 95% confident that the percentage of adults having money in the saving account is $\mathbf{6 1 . 8 \%}$ to $\mathbf{6 6 . 2 \%}$.

Determination of the Sample Size: Let $\mathbf{m}=Z_{\frac{\alpha}{2}} \sqrt{\frac{p(1-p)}{n}}$ Solving for n gives us, $\mathrm{n}=\left(\frac{Z_{\frac{\sigma_{2}}{}}}{m}\right)^{2} p(1-p)$ Note: If p is unknown take it to be $p=0.5 . \quad p=0.5$ it gives the maximum sample size.

Example 4. We want to estimate with a maximum error of 3\%, the true proportion of VSU students who would like Friday classes during the summer semester and we want 96% confidence in our results. How many VSU students must we survey?
Solution. $\mathrm{n}=\left(\frac{Z_{\frac{\alpha}{2}}}{m}\right)^{2} \hat{p}(1-\hat{p})=\left(\frac{2.05}{0.03}\right)^{2}(0.5)(0.5)=1167.36$. So, we need to survey 1168 students.

Example 5. A National survey of registered voters is being conducted to determine the proportion of voters who favor a particular candidate. Assume that the desired confidence level is 95% and that the desired maximum sampling error is 0.02 percent.
(a) How large a sample is needed if it is believed that approximately 35% of the population currently supports the candidate?
Solution. $\mathrm{n}=\left(\frac{Z_{\frac{\alpha}{2}}}{m}\right)^{2} \hat{p}(1-\hat{p})=\left(\frac{1.96}{0.02}\right)^{2}(0.35)(0.65)=2184.91$.
So, we need to survey 2185 voters.
(b) How large a sample is needed if no information is available on the proportion of voters currently supporting the candidate?
Solution. $\mathrm{n}=\left(\frac{Z_{\frac{\alpha}{2}}}{m}\right)^{2} \hat{p}(1-\hat{p})=\left(\frac{1.96}{0.02}\right)^{2}(0.5)(0.5)=2401$.
So, we need to survey 2401 voters.

Hypothesis Testing - One Population Proportion

General form of Hypothesis Testing

Step 1	$\begin{array}{ll} \hline \text { Case1. } & H_{0}: p \geq p_{0} \\ & H_{a}: p<p_{0} \end{array}$	$\begin{array}{ll} \hline \text { Case 2. } & H_{0}: p \leq p_{0} \\ & H_{a}: p>p_{0} \end{array}$	$\begin{array}{ll} \hline \text { Case 3. } & H_{0}: p=p_{0} \\ & H_{a}: p \neq p_{0} \end{array}$
Step 2	$Z^{*}=\frac{\hat{p}-p_{0}}{\sqrt{\frac{p_{0}\left(1-p_{0}\right)}{n}}}$	$Z^{*}=\frac{\hat{p}-p_{0}}{\sqrt{\frac{p_{0}\left(1-p_{0}\right)}{n}}}$	$Z^{*}=\frac{\hat{p}-p_{0}}{\sqrt{\frac{p_{0}\left(1-p_{0}\right)}{n}}}$
Step 3	Re ject H_{0} if $Z^{*}<-Z_{\alpha}$	Re ject H_{0} if $Z^{*}>Z_{\alpha}$	Re ject H_{0} if $\left\|Z^{*}\right\|>Z_{\frac{\alpha}{2}}$
Step 4	$\begin{array}{ll}\text { Conclusion: } & \text { We do not reject } H_{0} \text { and conclude that } \\ & \text { We reject } H_{0} \text { and conclude that }\end{array}$		

Example 6. Mr. Dixon, a Republican, claims that he has the support of 55\% of all voters in the 23 rd U.S. Congressional District. Can the Central Committee conclude that less than 55% of all voters support Mr. Dixon, if, out of a random sample of 500 registered voters, only 245 expressed their preference for Mr. Dixon? Use $\alpha=0.01$ as the level of significance.

1. $H_{0}: p=0.55$ vs $H_{a}: p<0.55$ (Lower Tail Test)
2. Test Statistic: $Z^{*}=\frac{\hat{p}-p_{0}}{\sqrt{\frac{p_{0}\left(1-p_{0}\right)}{n}}}=\frac{0.49-0.55}{\sqrt{\frac{0.55(1-0.55)}{500}}}=-2.7$
3. Re ject H_{0} if $Z^{*}<-Z_{\alpha=0.01}=-2.33$
4. Conclusion: Since $Z^{*}=-2.7$ is less than -2.33 , we reject H_{0} and conclude that the Central Committee has enough evidence that less than 55% of all voters support Mr. Dixon.
Note: $\mathrm{P}-V a l u e ~$ $\mathrm{P}-\mathrm{P}\left(\mathrm{Z}<\mathrm{Z}^{*}\right)=\mathrm{P}(\mathrm{Z}<-2.7)=0.0035$ the same conclusion as in step 4 above.

Example 7. The manager of an Italian restaurant is considering opening a carryout food service. However, the manager is concerned that not all individuals placing order by phone actually pickup the order. If 90% or less of the phone orders will be picked up, the restaurant will not have a profitable operation. However, if it can be concluded that more than 90% of the phone orders will be picked up the carryout operation will be a worthwhile addition for the restaurant. During a 2 -week period, 234 orders in a sample of 250 phone orders were picked up. Test the appropriate hypothesis at $\alpha=0.05$ level of significance.

| 1. $H_{0}: p=0.90$ vs $H_{a}: p>0.90($ Upper Tail Test $)$ |
| :--- | :--- |
| 2. Test Statistic: $Z^{*}=\frac{\hat{p}-p_{0}}{\sqrt{\frac{p_{0}\left(1-p_{0}\right)}{n}}}=\frac{0.936-0.90}{\sqrt{\frac{0.90(1-0.90)}{250}}}=1.9$ |
| 3. Re ject H_{0} if $Z^{*}>Z_{\alpha=0.05}^{n}=1.645$ |
| 4. Conclusion: Since $Z^{*}=1.9$ is greater than 1.645, we reject H_{0}
 and conclude that more than 90% of the phone orders will be
 picked up and the carryout operation should be implemented. |
| Note: $\mathrm{P}-$ Value $=\mathrm{P}\left(\mathrm{Z}>\mathrm{Z}^{*}\right)=\mathrm{P}(\mathrm{Z}>1.9)=1-\mathrm{P}(\mathrm{Z}<1.9)=1-0.9713$
 $=0.0287$
 P-Value $=0.0287<\alpha=0.05$. Therefore, we reject H_{0} and draw
 the same conclusion as in step 4 above. |

Homework: 8.30 (a), 8.31, 8.32, 8.33, 8.34, 8.35(a), 8.36, 8.37(a), 8.38(a and c), 8.39, 8.40, 8.41, 8.42 pages 503-504

Section 8.2 Comparing Two Population Proportions ($\mathrm{P}_{1}-\mathrm{P}_{2}$).

The estimator for the difference of two population proportions is $\left(\hat{P}_{1}-\hat{P}_{2}\right)$.
Note: $E\left(\hat{\mathrm{P}}_{1}-\hat{\mathrm{P}}_{2}\right)=\mathrm{P}_{1}-\mathrm{P}_{2} \quad$ and $\quad \sigma_{\hat{P}_{1}-\hat{P}_{2}}=\sqrt{\frac{\mathrm{P}_{1}\left(1-\mathrm{P}_{1}\right)}{\mathrm{n}_{1}}+\frac{\mathrm{P}_{2}\left(1-\mathrm{P}_{2}\right)}{\mathrm{n}_{2}}}$
Based on the C.L.T.: If $n_{1} p_{1} \geq 10, n_{1}\left(1-p_{1}\right) \geq 10, n_{2} p_{2} \geq 10, n_{2}\left(1-p_{2}\right) \geq 10$, then

$$
\left(\hat{P}_{1}-\hat{P}_{2}\right) \sim N\left(P_{1}-P_{2}, \sqrt{\frac{P_{1}\left(1-P_{1}\right)}{n_{1}}+\frac{P_{2}\left(1-P_{2}\right)}{n_{2}}}\right) .
$$

$(1-\alpha) \%$ Confidence Interval for $\left(\mathrm{P}_{1}-\mathrm{P}_{2}\right)$.

$$
\left(\hat{\mathrm{P}}_{1}-\hat{\mathrm{P}}_{2}\right) \pm \mathrm{Z}_{\frac{\alpha}{2}} \sqrt{\frac{\hat{\mathrm{P}}_{1}\left(1-\hat{\mathrm{P}}_{1}\right)}{\mathrm{n}_{1}}+\frac{\hat{\mathrm{P}}_{2}\left(1-\hat{\mathrm{P}}_{2}\right)}{\mathrm{n}_{2}}}
$$

Example 1: The following table shows the result on a recent survey among men and women in supporting the president's new tax law. Find a 95% confidence interval for the difference of the two population proportions that are currently supporting the president's new tax law.

Population	n	x	$\hat{\mathrm{P}}=\frac{\mathrm{x}}{\mathrm{n}}$
1 (Men)	7180	1630	0.227
2 (Women)	9916	1684	0.170
Total	17096	3314	0.194

$$
\begin{aligned}
& \left(\hat{P}_{1}-\hat{P}_{2}\right) \pm Z_{\frac{a}{2}} \sqrt{\frac{\hat{P}_{1}\left(1-\hat{P}_{1}\right)}{n_{1}}+\frac{\hat{P}_{2}\left(1-\hat{P}_{2}\right)}{n_{2}}} \Rightarrow(0.227-0.170) \pm(1.96) \sqrt{\frac{0.227(1-0.227)}{7180}+\frac{0.170(1-0.170)}{9916}} \\
& \Rightarrow(0.057) \pm(1.96)(0.00622) \Rightarrow(0.057) \pm(0.012) \Rightarrow(0.045,0.069)
\end{aligned}
$$

We are 95% confident that the proportion of men that support the new tax law is 4.5% to 6.9% higher than the proportion of women.

Hypothesis Testing: $H_{0}: \mathrm{P}_{1}-\mathrm{P}_{2}=0$
We are doing hypothesis testing under the assumption that the Null Hypothesis, $H_{0}: \mathrm{P}_{1}-\mathrm{P}_{2}=0$, is true, meaning that the two population proportions are the same; i.e. $P_{1}=P_{2}=P$. Since the two population proportions are the same, the standard deviation of $\left(\hat{P}_{1}-\hat{P}_{2}\right)$ is
$\sigma_{\hat{P}_{1}-\hat{P}_{2}}=\sqrt{\frac{\mathrm{P}_{1}\left(1-\mathrm{P}_{1}\right)}{\mathrm{n}_{1}}+\frac{\mathrm{P}_{2}\left(1-\mathrm{P}_{2}\right)}{\mathrm{n}_{2}}}=\sqrt{\frac{\mathrm{P}(1-\mathrm{P})}{\mathrm{n}_{1}}+\frac{\mathrm{P}(1-\mathrm{P})}{\mathrm{n}_{2}}}=\sqrt{\mathrm{P}(1-\mathrm{P})\left(\frac{1}{\mathrm{n}_{1}}+\frac{1}{\mathrm{n}_{2}}\right)}$. We
estimate the common value of \mathbf{P}, by the overall proportion of success in both samples. We are using $\hat{\mathbf{P}}$ to estimate \mathbf{P}; i.e. $\hat{\mathbf{P}}=\frac{\mathrm{X}_{1}+\mathrm{X}_{2}}{\mathrm{n}_{1}+\mathrm{n}_{2}}$. $\hat{\mathbf{P}}$ is called the pooled estimate because we are combining or pooling, the information from both samples for our estimate. Hence, the pooled standard deviation is denoted by $S_{\mathbf{P}}$ and is given by the following formula, $S_{\mathrm{P}}=\sqrt{\hat{\mathrm{P}}(1-\hat{\mathrm{P}})\left(\frac{1}{\mathrm{n}_{1}}+\frac{1}{\mathrm{n}_{2}}\right)}$ where $\hat{\mathbf{p}}=\frac{\mathrm{X}_{1}+\mathrm{X}_{2}}{\mathrm{n}_{1}+\mathrm{n}_{2}}$.

Hypothesis Testing - Two Population Proportions

General form of Hypothesis Testing

$\left.\begin{array}{|l|ll|ll|ll|}\hline \text { Step 1 } & \text { Case1. } \begin{array}{l}H_{0}: p_{1}-p_{2}=0 \\ H_{a}: p_{1}-p_{2}<0\end{array} & \text { Case } 2 . & H_{0}: p_{1}-p_{2}=0 \\ H_{a}: p_{1}-p_{2}>0\end{array}\right)$

Example 2: In Example 1, do hypothesis testing. Do we have enough evidence that more men support the new tax law than women? Test it at $\alpha=0.05$.

$$
S_{p}=\sqrt{0.194(1-0.194)\left(\frac{1}{7180}+\frac{1}{9916)}\right.}=0.006126 \text { and } \hat{\mathbf{P}}=\frac{\mathrm{X}_{1}+\mathrm{x}_{2}}{\mathrm{n}_{1}+\mathrm{n}_{2}}=\frac{1630+1684}{7180+9916}=\frac{3314}{17096}=0.194
$$

1. $\mathrm{H}_{0}: \mathrm{P}_{1}-\mathrm{P}_{2}=0$ vs $\mathrm{H}_{\mathrm{a}}: \mathrm{P}_{1}-\mathrm{P}_{2}>0$ (Upper Tail Test $)$
2.
$Z^{*}=\frac{\left(\hat{p}_{1}-\hat{p}_{2}\right)-0}{S_{p}}=\frac{(0.227-0.170)-0}{0.006126}=9.34$ where $S_{p}=0.006126$ and $\hat{\mathbf{P}}=0.194$
3. Re ject H_{0} if $Z^{*}>Z_{\alpha=0.05}=1.645$
4. Conclusion: Since $Z^{*}=9.34$ is greater than 1.645 , we reject H_{0}
and conclude that more men will support the new tax law than
women.
Note: $\mathbf{P}-V a l u e ~$ $\mathrm{P}-\mathrm{P}$ ($\mathrm{P}\left(\mathrm{Z}>\mathrm{Z}^{*}\right)=\mathrm{P}(\mathrm{Z}>9.34)=1-\mathrm{P}(\mathrm{Z}<9.34)=1-1=0$ conclusion as in step 4 above.

Example 3: The power take-off(PTO) driveline on farm tractors is a potentially serious hazard to farmers. A shield covers the driveline on new tractors, but for a variety of reasons, the shield is often missing on older tractors. Two types of shield are the bolt-on and the flip-up. A study initiated by the National Safety Council took a sample of older tractors to examine the proportions of shields removed. The study found that 35 shields had been removed from the 83 tractors having bolt-on shields and 15 had been removed from 136 tractors with flip-up shields.
(a) Test the hypothesis that there is no difference in the two proportions of the type of shields. (use $\alpha=0.01$)
$S_{p}=\sqrt{0.2283(1-0.2283)\left(\frac{1}{83}+\frac{1}{136}\right)}=0.0585$ and $\hat{\mathbf{P}}=\frac{\mathrm{X}_{1}+\mathrm{X}_{2}}{\mathrm{n}_{1}+\mathrm{n}_{2}}=\frac{35+15}{83+136}=\frac{50}{219}=0.2283$

| 1. $\mathrm{H}_{0}: \mathrm{P}_{1}-\mathrm{P}_{2}=0$ vs $\mathrm{H}_{\mathrm{a}}: \mathrm{P}_{1}-\mathrm{P}_{2} \neq 0$ (Two Tail Test) |
| :--- | :--- |
| 2. |
| $Z^{*}=\frac{\left(\hat{p}_{1}-\hat{p}_{2}\right)-0}{S_{p}}=\frac{(0.4217-0.1103)-0}{0.0585}=5.33$ where $S_{p}=0.0585$ and $\hat{\mathbf{P}}=0.2283$ |
| 3. Re ject H_{0} if $\left\|Z^{*}\right\|>Z_{\frac{\alpha}{2}=0.05}=2.575$ |

4. Conclusion: Since $Z^{*}=5.33$ is greater than 2.575 , we reject H_{0} and conclude that there is a significant difference in the two shield types.
Note: P-Value $=2 P\left(Z<-\left|Z^{*}\right|\right)=2 \mathrm{P}(\mathrm{Z}<-5.33)=2.0=0$
P-Value $=0<\alpha=0.01$. Therefore, we reject H_{0} and draw the same conclusion as in step 4 above.
(b) Give a 90% confidence interval for the proportions of removed shields for the bolt-on and the flip-up types. Based on the data, what recommendation would you make about the type of shield to be used on new tractors?
$\left(\hat{p}_{1}-\hat{p}_{2}\right) \pm Z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p}_{1}\left(1-\hat{p}_{1}\right)}{n_{1}}+\frac{\hat{p}_{2}\left(1-\hat{p}_{2}\right)}{n_{2}}} \Rightarrow(0.4217-0.1103) \pm(1.645) \sqrt{\frac{0.4217(1-0.4217)}{83}+\frac{0.1103(1-0.1103)}{136}}$
$\Rightarrow(0.3114) \pm(1.645)(0.0605) \Rightarrow(0.3114) \pm(0.0995) \Rightarrow(0.2119,0.4109)$
We are 90% confident that the proportion of bolt-on shied removed is 21.19% to 41.09% higher than the proportion of flip-up shied removed. Hence, the flip-up shield shields are much more likely to remain on the tractor.
