Section 1.3 The Probability Set Function

Let \mathscr{C} be the sample Space, and $\mathbb{C} \subset \mathscr{C}$, then $P(\mathbb{C}) =$ The probability that the out of the random experiment is an element of \mathbb{C} .

We saw the P(C) to be the number to where the f/N of the event C tends to stabilize.

Definition: Let $\mathbf{C} \subset \mathcal{C}$, if

(a)
$$P(C) \ge 0$$

(b) $P(C_1 \cup C_2 \cup C_3 \cup ...) = P(C_1) + P(C_2) + P(C_3) + ...$
Where $P(C_i \cap C_j) = \emptyset$, and $i \ne j$
(c) $P(\mathcal{C}) = 1$

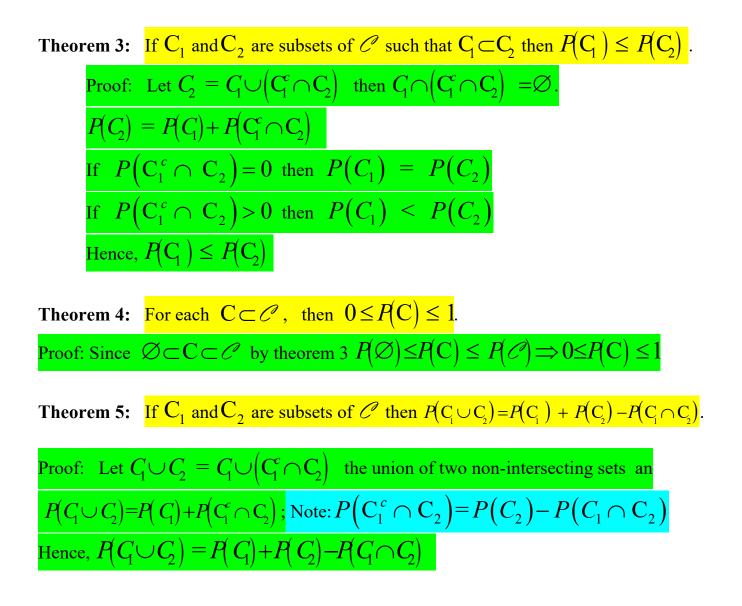
Then the P(C) is called the probability set function.

Theorem 1: For each $\mathbf{C} \subset \mathcal{C}$, $P(\mathbf{C}) = 1 - P(\mathbf{C}^c)$. **Proof:** $\mathcal{C} = \mathbf{C} \cup \mathbf{C}^c$ and $\mathbf{C} \cap \mathbf{C}^c = \emptyset$

$$\begin{split} \mathbf{P}\left(\mathcal{C}\right) &= P\left(\mathbf{C}\right) + P\left(\mathbf{C}^{c}\right) \implies P\left(\mathbf{C}\right) = \mathbf{P}\left(\mathcal{C}\right) \\ \implies P\left(\mathbf{C}\right) &= 1 - P\left(\mathbf{C}^{c}\right) \text{ since } \mathbf{P}(\mathcal{C}) = 1. \end{split}$$

Theorem 2: The probability of the null set is zero. That is, $P(\emptyset) = 0$

Proof:
$$\mathcal{C} = \mathbf{C} \cup \mathbf{C}^c$$
 and $\mathbf{C} \cap \mathbf{C}^c = \emptyset$
Let $\mathbf{C} = \emptyset$, then $\mathbf{C}^c = \mathcal{C}$
 $\mathcal{C} = \mathbf{C} \cup \mathbf{C}^c \implies$
 $\mathbf{P}(\mathcal{C}) = P(\mathbf{C}) + P(\mathbf{C}^c) \implies 1 = P(\mathbf{C}) + P(\mathbf{C}^c)$
 $\implies P(\mathbf{C}) = 1 - 1 = 0 \implies P(\emptyset) = 0 \text{ sin } ce \ \mathbf{C} = \emptyset$



If the sets $C_1, C_2, C_3, ...$ are subsets of \mathscr{C} such that no two sets have an element in common, they are called mutually exclusive sets. Furthermore, if $\mathscr{C} = C_1 \cup C_2 \cup C_3 \cup ...$, then they are also called mutually exclusive and exhaustive sets.

Example: Roll a die once. $C = \{1, 2, 3, 4, 5, 6\}$ $C_1 = \{1, 3, 5\}$ and $C_2 = \{2, 4, 6\}$ and $C = C_1 \cup C_2$. Therefore, C_1 and C_2 are mutually exclusive and exhaustive sets.

Example HW 3.3 page 18. $C = \{C: \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{32}, \frac{1}{64}, \dots \}$

a. P(
$$\mathscr{O}$$
) = $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots = \sum_{i=1}^{\infty} \left(\frac{1}{2}\right)^i = \sum_{i=0}^{\infty} \frac{1}{2} \left(\frac{1}{2}\right)^i$. This is the

geometric series with $a = \frac{1}{2}$ and $r = \frac{1}{2}$. $\lim_{n \to \infty} S_n = \frac{a}{1-r} = \frac{\frac{1}{2}}{1-\frac{1}{2}} = \frac{\frac{1}{2}}{\frac{1}{2}} = 1$.

b. Let
$$C_1 = \{H, TH, TTH, TTTH, TTTTH\}; P(C_1) = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} = \frac{31}{32}$$

c. $C_2 = \{TTTTH, TTTTTH\}; P(C_2) = \frac{1}{32} + \frac{1}{64} = \frac{3}{64};$
 $C_1 \cap C_2 = \{TTTTH\}; P(C_1 \cap C_2) = \frac{1}{32} \text{ and}$
 $P(C_1 \cup C_2) = P(C_1) + P(C_2) - P(C_1 \cap C_2) = \frac{31}{32} + \frac{3}{64} - \frac{1}{32} = \frac{63}{64}$

Example HW 3.5 page 18. $C = \{c: 0 < c < \infty\}$ and $C \subset C$ evaluate the $P(C) = \int_{C} e^{-x} dx$. $P(C) = \int_{0}^{\infty} e^{-x} dx = -e^{-x} \Big|_{0}^{\infty} = -\lim_{x \to \infty} e^{-x} - (-e^{-0}) = 0 - (-1) = 1$

a. If
$$C = \{c: 4 < c < \infty\}$$
 then $P(C) = \int_{4}^{\infty} e^{-x} dx = -e^{-x} \Big|_{4}^{\infty} = -\lim_{x \to \infty} e^{-x} - (-e^{-4}) = 0 + e^{-4} = e^{-4}$
b. If $C^{c} = \{c: 0 < c < 4\}$ then $P(C) = \int_{0}^{4} e^{-x} dx = -e^{-x} \Big|_{0}^{4} = -e^{-4} - (-e^{-0}) = 1 - e^{-4}$

Or since
$$P(C^c) = 1 - P(C) = 1 - e^{-4}$$
.

c.
$$P(C \cup C^{c}) = P(C) + P(C) - P(C \cap C^{c}) = e^{-4} + (1 - e^{-4}) - 0 = 1$$

Homework: 3.4, 3.6, 3.7, and 3.9(part a only) on p.p. 18

Section 1.3 Continuous

Let \mathcal{O} be partitioned into **k** mutually exclusive and exhaustive events,

 $C_1, C_2, C_3, \dots, C_k$ such that $C_1 \cup C_2 \cup C_3 \cup \dots C_k = \mathcal{C}$. We assume that each event C_i ; $i = 1, \dots, k$ has the same probability. $P(C_i) = \frac{1}{k}$; $i = 1, \dots, k$. The events $C_1, C_2, C_3, \dots, C_k$ are equally likely to occur.

Let the event **E** be the union of **r** of these mutually exclusive and exhaustive events, say $\mathbf{E} = \mathbf{C}_1 \cup \mathbf{C}_2 \cup \mathbf{C}_3 \cup \dots \mathbf{C}_r$; $r \leq k$. Since they are mutually exclusive events, $P(\mathbf{E}) = P(\mathbf{C}_1) + P(\mathbf{C}_2) + P(\mathbf{C}_3) + \dots + P(\mathbf{C}_r) = \frac{r}{k}$.

Example: We have an ordinary deck of cards, (k =52). Select one card and let E_1 the outcome is a spade, (r =13). $P(E_1) = \frac{r}{k} = \frac{13}{52}$. Let E_2 the outcome is a king, (r =4). $P(E_2) = \frac{r}{k} = \frac{4}{52}$.

Now select 5 cards one at a time without replacement. What is the probability that all 5 cards are spade?

$$r = \begin{pmatrix} 13 \\ 5 \end{pmatrix} \begin{pmatrix} 39 \\ 0 \end{pmatrix} \text{ and } k = \begin{pmatrix} 52 \\ 5 \end{pmatrix}; \text{ Hence, } P(E_3) = \frac{r}{k} = \frac{\binom{13}{5}\binom{39}{0}}{\binom{52}{5}} = 0.000495$$

What is the probability that at least one card is a spade?

$$r = {\binom{13}{1}}{\binom{39}{4}} + {\binom{13}{2}}{\binom{39}{3}} + {\binom{13}{3}}{\binom{39}{2}} + {\binom{13}{3}}{\binom{39}{2}} + {\binom{13}{4}}{\binom{39}{1}} + {\binom{13}{5}}{\binom{39}{0}} \text{ and } k = {\binom{52}{5}};$$

Hence, $P(E_4) = \frac{r}{k} = \frac{{\binom{13}{1}}{\binom{39}{4}} + {\binom{13}{2}}{\binom{39}{3}} + {\binom{13}{3}}{\binom{39}{2}} + {\binom{13}{4}}{\binom{39}{1}} + {\binom{13}{5}}{\binom{39}{1}} = 0.7785$

An easier way: Since the event "at least" always has the complement the "none", we can compute the probability for the complement and then use $P(C) = 1 - P(C^{\circ})$.

$$r = {\binom{13}{0}}{\binom{39}{5}} \text{and } k = {\binom{52}{5}}; \quad \text{Hence,} \quad P\left(E_5^{\circ}\right) = \frac{r}{k} = \frac{{\binom{13}{0}}{\binom{39}{5}}}{{\binom{52}{5}}} = 0.2215 \implies P(E) = 1 - 0.2215 = 0.7785$$

Select 5 cards. What is the probability of exactly 3 kings and 2 queens? $r = \binom{4}{3} \binom{4}{2} \binom{44}{0} \text{ and } k = \binom{52}{5}; \text{ Hence, } P(E) = \frac{r}{k} = \frac{\binom{4}{3}\binom{4}{2}\binom{44}{0}}{\binom{52}{5}} = \frac{24}{2598960} = 0.000009$

Select 5 cards. What is the probability of exactly 2 kings, 2 queens, and 1 jack? $r = \binom{4}{2}\binom{4}{2}\binom{4}{1}\binom{40}{0}$ and $k = \binom{52}{5}$; Hence, $P(E_{1}) = \frac{r}{k} = \frac{\binom{4}{2}\binom{4}{2}\binom{4}{1}\binom{40}{0}}{\binom{52}{5}} = \frac{144}{2598960} = 0.000055$

Example: Consider a loaded die. Means the dots on the die appear proportional to the sum of the total dots on the die. $C = \{1, 2, 3, 4, 5, 6\}$ and $f(x) = \frac{x}{21}$; x = 1, 2, 3, 4, 5, 6

Roll the die once. What is the probability the number is even? $C = \{2, 4, 6\}$ $P(C) = \frac{2+4+6}{21} = \frac{12}{21} = 0.5714$

Homework: 3.10, 3.11, 3.12, 3.13, 3.14, 3.15(part a only) on p.p. 19