Section 1.3 The Probability Set Function

Let C be the sample Space, and $\mathrm{C} \subset C$, then $P(\mathrm{C})=$ The probability that the out of the random experiment is an element of C .

We saw the $P(\mathrm{C})$ to be the number to where the \mathbf{f} / \mathbf{N} of the event C tends to stabilize.

Definition: Let $\mathrm{C} \subset C$, if
(a) $P(\mathrm{C}) \geq 0$
(b) $P\left(\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup \mathrm{C}_{3} \cup \ldots\right)=P\left(\mathrm{C}_{1}\right)+P\left(\mathrm{C}_{2}\right)+P\left(\mathrm{C}_{3}\right)+\ldots$ Where $P\left(\mathrm{C}_{i} \cap \mathrm{C}_{j}\right)=\varnothing$, and $i \neq j$
(c) $\mathrm{P}(C)=1$

Then the $P(\mathrm{C})$ is called the probability set function.
Theorem 1: For each $\mathrm{C} \subset C, P(\mathrm{C})=1-P\left(\mathrm{C}^{c}\right)$.

$$
\begin{aligned}
& \text { Proof: } C=\mathrm{C} \cup \mathrm{C}^{c} \text { and } \mathrm{C} \cap \mathrm{C}^{c}=\varnothing \\
& \mathrm{P}(C)=P(\mathrm{C})+P\left(\mathrm{C}^{c}\right) \Rightarrow P(\mathrm{C})=\mathrm{P}(C)-P\left(\mathrm{C}^{c}\right) \\
& \Rightarrow P(\mathrm{C})=1-P\left(\mathrm{C}^{c}\right) \text { since } \mathrm{P}(C)=1 .
\end{aligned}
$$

Theorem 2: The probability of the null set is zero. That is, $P(\varnothing)=0$.

$$
\begin{aligned}
& \text { Proof: } C=\mathrm{C}^{\text {U }} \mathrm{C}^{c} \text { and } \mathrm{C} \cap \mathrm{C}^{c}=\varnothing \\
& \text { Let } \mathrm{C}=\varnothing \text {, then } \mathrm{C}=C \\
& \mathrm{C}=\mathrm{C} \cup \mathrm{C}^{c} \Rightarrow \\
& \mathrm{P}(C)=P(\mathrm{C})+P\left(\mathrm{C}^{c}\right) \Rightarrow 1=P(\mathrm{C})+P\left(\mathrm{C}^{c}\right) \\
& \Rightarrow P(\mathrm{C})=1-1=0 \Rightarrow P(\varnothing)=0 \text { since } \mathrm{C}=\varnothing
\end{aligned}
$$

Theorem 3: If C_{1} and C_{2} are subsets of C such that $\mathrm{C}_{1} \subset \mathrm{C}_{2}$ then $P\left(\mathrm{C}_{1}\right) \leq P\left(\mathrm{C}_{2}\right)$.
Proof: Let $C_{2}=C_{1} \cup\left(\mathrm{C}_{1}^{c} \cap \mathrm{C}_{2}\right)$ then $C_{1} \cap\left(\mathrm{C}_{1}^{c} \cap \mathrm{C}_{2}\right)=\varnothing$.
$P\left(C_{2}\right)=P\left(C_{1}\right)+P\left(\mathrm{C}_{1}^{c} \cap \mathrm{C}_{2}\right)$
If $P\left(\mathrm{C}_{1}^{c} \cap \mathrm{C}_{2}\right)=0$ then $P\left(C_{1}\right)=P\left(C_{2}\right)$
If $P\left(\mathrm{C}_{1}^{c} \cap \mathrm{C}_{2}\right)>0$ then $P\left(C_{1}\right)<P\left(C_{2}\right)$
Hence, $P\left(\mathrm{C}_{1}\right) \leq P\left(\mathrm{C}_{2}\right)$

Theorem 4: For each $\mathrm{C} \subset C$, then $0 \leq P(\mathrm{C}) \leq 1$.
Proof: Since $\varnothing \subset \mathrm{C} \subset C$ by theorem $3 P(\varnothing) \leq P(\mathrm{C}) \leq P(C) \Rightarrow 0 \leq P(\mathrm{C}) \leq 1$

Theorem 5: If C_{1} and C_{2} are subsets of C then $P\left(\mathrm{C}_{1} \cup \mathrm{C}_{2}\right)=P\left(\mathrm{C}_{1}\right)+P\left(\mathrm{C}_{2}\right)-P\left(\mathrm{C}_{1} \cap \mathrm{C}_{2}\right)$.
Proof: Let $C \cup C_{2}=C_{1} \cup\left(\mathrm{C}_{1}^{c} \cap \mathrm{C}_{2}\right)$ the union of two non-intersecting sets an $P\left(C_{1} \cup C_{2}\right)=P\left(C_{1}\right)+P\left(\mathrm{C}_{1}^{c} \cap \mathrm{C}_{2}\right)$; Note: $P\left(\mathrm{C}_{1}^{c} \cap \mathrm{C}_{2}\right)=P\left(C_{2}\right)-P\left(C_{1} \cap \mathrm{C}_{2}\right)$
Hence, $P\left(C_{1} \cup C_{2}\right)=P\left(G_{1}\right)+P\left(C_{2}\right)-P\left(C_{1} \cap C_{2}\right)$

If the sets $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \ldots$ are subsets of C such that no two sets have an element in common, they are called mutually exclusive sets. Furthermore, if $C=C_{1} \cup \mathrm{C}_{2} \cup \mathrm{C}_{3} \cup \ldots$, then they are also called mutually exclusive and exhaustive sets.

Example: Roll a die once. $C=\{1,2,3,4,5,6\}$
$C_{1}=\{1,3,5\}$ and $C_{2}=\{2,4,6\}$ and $C=C_{1} \cup C_{2}$. Therefore, C_{1} and C_{2} are mutually exclusive and exhaustive sets.

Example HW 3.3 page 18. $C=\left\{c: \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{32}, \frac{1}{64}, \ldots\right\}$
a. $\mathrm{P}(C)=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\ldots=\sum_{i=1}^{\infty}\left(\frac{1}{2}\right)^{i}=\sum_{i=0}^{\infty} \frac{1}{2}\left(\frac{1}{2}\right)^{i}$. This is the geometric series with $a=\frac{1}{2}$ and $r=\frac{1}{2} . \lim _{n \rightarrow \infty} S_{n}=\frac{a}{1-r}=\frac{\frac{1}{2}}{1-\frac{1}{2}}=\frac{\frac{1}{2}}{\frac{1}{2}}=1$.
b. Let $C_{1}=\{H, T H, T T H, T T T H, T T T T H\} ; P\left(C_{1}\right)=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}=\frac{31}{32}$
c. $\quad C_{2}=\{$ TTTTH, TTTTTTH $\} ; P\left(C_{2}\right)=\frac{1}{32}+\frac{1}{64}=\frac{3}{64}$;

$$
\begin{aligned}
& C_{1} \cap C_{2}=\{T T T T H\} ; P\left(C_{1} \cap C_{2}\right)=\frac{1}{32} \text { and } \\
& P\left(C_{1} \cup C_{2}\right)=P\left(C_{1}\right)+P\left(C_{2}\right)-P\left(C_{1} \cap C_{2}\right)=\frac{31}{32}+\frac{3}{64}-\frac{1}{32}=\frac{63}{64}
\end{aligned}
$$

Example HW 3.5 page 18. $C=\{c: 0<c<\infty\}$ and $\mathrm{C} \subset C$ evaluate the $P(C)=\int_{C} e^{-x} d x . \quad P(C)=\int_{0}^{\infty} e^{-x} d x=-\left.e^{-x}\right|_{0} ^{\infty}=-\lim _{x \rightarrow \infty} e^{-x}-\left(-e^{-0}\right)=0-(-1)=1$
a. If $C=\{c: 4<c<\infty\}$ then $P(C)=\int_{4}^{\infty} e^{-x} d x=-\left.e^{-x}\right|_{4} ^{\infty}=-\lim _{x \rightarrow \infty} e^{-x}-\left(-e^{-4}\right)=0+e^{-4}=e^{-4}$
b. If $C=\{c: 0<c<4\}$ then $P(C)=\int_{0}^{4} e^{-x} d x=-\left.e^{-x}\right|_{0} ^{4}=-e^{-4}-\left(-e^{-0}\right)=1-e^{-4}$

Or since $P\left(\mathrm{C}^{c}\right)=1-P(\mathrm{C})=1-e^{-4}$.
c. $P\left(\mathrm{C} \cup \mathrm{C}^{c}\right)=P(\mathrm{C})+P(\mathrm{C})-P\left(\mathrm{C} \cap \mathrm{C}^{c}\right)=e^{-4}+\left(1-e^{-4}\right)-0=1$

Homework: 3.4, 3.6, 3.7, and 3.9(part a only) on p.p. 18

Section 1.3 Continuous

Let C be partitioned into \mathbf{k} mutually exclusive and exhaustive events, $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \ldots, \mathrm{C}_{k}$ such that $\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup \mathrm{C}_{3} \cup \ldots C_{k}=C$. We assume that each event $\mathrm{C}_{i} ; i=1, \ldots, k$ has the same probability. $P\left(\mathrm{C}_{i}\right)=\frac{1}{k} ; i=1, \ldots, k$. The events $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \ldots, \mathrm{C}_{k}$ are equally likely to occur.

Let the event \mathbf{E} be the union of \mathbf{r} of these mutually exclusive and exhaustive events, say $\mathrm{E}=\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup \mathrm{C}_{3} \cup \ldots C_{r} ; r \leq k$. Since they are mutually exclusive events, $P(\mathrm{E})=P\left(\mathrm{C}_{1}\right)+P\left(\mathrm{C}_{2}\right)+P\left(\mathrm{C}_{3}\right)+\ldots+P\left(\mathrm{C}_{r}\right)=\frac{r}{k}$.

Example: We have an ordinary deck of cards, $(\mathrm{k}=52)$. Select one card and let E_{1} the outcome is a spade, $(\mathrm{r}=13) . P\left(\mathrm{E}_{1}\right)=\frac{r}{k}=\frac{13}{52}$.
Let E_{2} the outcome is a king, $(\mathrm{r}=4) . P\left(\mathrm{E}_{2}\right)=\frac{r}{k}=\frac{4}{52}$.
Now select 5 cards one at a time without replacement. What is the probability that all 5 cards are spade?
$r=\binom{13}{5}\binom{39}{0}$ and $k=\binom{52}{5} ;$ Hence, $P\left(\mathrm{E}_{3}\right)=\frac{r}{k}=\frac{\binom{13}{5}\binom{39}{0}}{\binom{52}{5}}=0.000495$
What is the probability that at least one card is a spade?

$$
r=\binom{13}{1}\binom{39}{4}+\binom{13}{2}\binom{39}{3}+\binom{13}{3}\binom{39}{2}+\binom{13}{4}\binom{39}{1}+\binom{13}{5}\binom{39}{0} \text { and } k=\binom{52}{5} ;
$$

Hence, $P\left(\mathrm{E}_{4}\right)=\frac{r}{k}=\frac{\binom{13}{1}\binom{39}{4}+\binom{13}{2}\binom{39}{3}+\binom{13}{3}\binom{39}{2}+\binom{13}{4}\binom{39}{1}+\binom{13}{5}\binom{39}{0}}{\binom{5}{5}}=0.7785$
An easier way: Since the event "at least" always has the complement the "none", we can compute the probability for the complement and then use $P(\mathrm{C})=1-P\left(\mathrm{C}^{c}\right)$. $r=\binom{13}{0}\binom{39}{5}$ and $k=\binom{52}{5}$; Hence, $P\left(\mathrm{E}_{5}^{c}\right)=\frac{r}{k}=\frac{\binom{13}{0}\binom{39}{5}}{\binom{52}{5}}=0.2215 \Rightarrow P(\mathrm{E})=1-0.2215=0.7785$

Select 5 cards. What is the probability of exactly 3 kings and 2 queens?
$r=\binom{4}{3}\binom{4}{2}\binom{44}{0}$ and $k=\binom{52}{5}$; Hence, $P(\mathrm{E})=\frac{r}{k}=\frac{\binom{4}{3}\binom{4}{2}\binom{44}{0}}{\binom{52}{5}}=\frac{24}{2589890}=0.000009$
Select 5 cards. What is the probability of exactly 2 kings, 2 queens, and 1 jack?
$r=\binom{4}{2}\binom{4}{2}\binom{4}{1}\binom{40}{0}$ and $k=\binom{52}{5} ;$ Hence, $P(\mathrm{E})=,\frac{r}{k}=\frac{\binom{4}{2}\binom{4}{2}\binom{4}{1}\binom{40}{0}}{\binom{52}{5}}=\frac{144}{2598960}=0.000055$

Example: Consider a loaded die. Means the dots on the die appear proportional to the sum of the total dots on the die. $C=\{1,2,3,4,5,6\}$ and $f(x)=\frac{x}{21} ; x=1,2,3,4,5,6$

Roll the die once. What is the probability the number is even? $C=\{2,4,6\}$ $P(C)=\frac{2+4+6}{21}=\frac{12}{21}=0.5714$

Homework: 3.10, 3.11, 3.12, 3.13, 3.14, 3.15(part a only) on p.p. 19

