Section 1.5 Random Variables

Random Experiment: Flip a coin once. $C=\{c$; where c is T or $H\}$.
We let $X(c)=x$ be a function such that $X(c)=1$; if c is H and $X(c)=0$; if c is T. So, \mathbf{X} is a function that takes us from the sample space C to another sample space of real number D where $D=\{x ; x=0$ or $x=1\}$.

C		D
\mathbf{H}	$X(c=H)$	$\mathbf{1}$
\mathbf{T}	$X(c=T)$	0

\mathbf{X} is a random variable that takes us from the sample space C to a the new sample space on the real line D. In other words, the random variable \mathbf{X} assigns numerical values to the experimental outcomes in C.

Defn 8: Consider a random experiment with a sample space C. A function \mathbf{X}, which assigns to each element $c \in \mathcal{C}$ one and only real number $X(c)=x$, is called a random variable.

If the elements in C are real number then C and D are the same; i.e. $C=D$.
Example: Roll a die once. $C=\{1,2,3,4,5,6\}$ and $D=\{1,2,3,4,5,6\}$. We define the $P(d)=P_{r}(x \in d)=P_{x}(d)$ to be the probability of the event d.

Note: Since $P(d)=P(c)$ both are probability set functions.
Example: Roll a die twice and \mathbf{X} be the sum on the faces of the two dies.

X	2	3	4	5	6	7	8	9	10	11	12
$f(x)=P(X)$	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{3}{36}$	$\frac{4}{36}$	$\frac{5}{36}$	$\frac{6}{36}$	$\frac{5}{36}$	$\frac{4}{36}$	$\frac{3}{36}$	$\frac{2}{36}$	$\frac{1}{36}$

Note: 1. $f(x)>0$ and 2. $\sum_{i=1}^{n} P\left(x_{i}\right)=1$. If both conditions are satisfied, the $f(x)$ is a probability density function(pdf) or probability mass function(pmf).

Example 2 page 33: In a lot of One hundred fuses, 20 fuses are defective. If we select five fuses at random, what is the probability that all five are good? Is this a pdf?

Let $\mathrm{X}=$ The number of good fuses, then $D=\{x ; x=0,1,2,3,4,5\}$. The probability distribution function then is
$f(x)=P(x)=\left\{\begin{array}{c}\binom{20}{5-x}\binom{80}{x} \\ \binom{100}{5}\end{array} \quad ;\right.$ for $x=0,1,2,3,4,5$. Is it a pdf ?

$\mathrm{P}(\mathrm{X}=0)+\mathrm{P}(\mathrm{X}=1)+\mathrm{P}(\mathrm{X}=2)+\mathrm{P}(\mathrm{X}=3) \mathrm{P}(\mathrm{X}=4)+\mathrm{P}(\mathrm{X}=5)=1$
Note: 1. $f(x)>0$ and 2. $\sum_{i=1}^{n} P\left(x_{i}\right)=1$. Yes, $f(x)$ is a pdf.

Example 1 page 31(Handout): Let the random variable X be the number of flips necessary to produce the first head.
$\overbrace{T T T T \ldots T}^{X-1} H$ then $f(x)=\left(\frac{1}{2}\right)^{x-1}\left(\frac{1}{2}\right)=\left(\frac{1}{2}\right)^{x} ; x=1,2,3, \ldots$
$\sum_{x=1}^{\infty}\left(\frac{1}{2}\right)^{x}=\sum_{i=0}^{\infty} \frac{1}{2}\left(\frac{1}{2}\right)^{x}$; geometric series; $a=\frac{1}{2}$ and $r=\frac{1}{2} . \lim _{n \rightarrow \infty} S_{n}=\frac{a}{1-r}=\frac{\frac{1}{2}}{1-\frac{1}{2}}=\frac{\frac{1}{2}}{\frac{1}{2}}=1$.
Note: 1. $f(x)>0$ and 2. $\sum_{i=1}^{n} P\left(x_{i}\right)=1$. Yes, $f(x)$ is a pdf.

Cumulative Distribution Function

Let $\mathrm{F}(x)=P(X \leq x) . \mathrm{F}(x)$ is called the cumulative distribution function(cdf).
For a discrete random variable $\mathrm{F}(x)=P(X \leq x)=\sum_{w \leq x} f(w)$.
Example: Let $f(x)=\frac{x}{6} ; x=1,2,3$. The pdf is given in the table below.

X	$f(x)=P(x)$
1	$\frac{1}{6}$
2	$\frac{2}{6}$
3	$\frac{3}{6}$

The cdf is

Question: $P(1.5<x \leq 4.5)=P(x=2)+P(x=3)=\frac{2}{6}+\frac{3}{6}=\frac{5}{6}$ using the pdf. $P(1.5<x \leq 4.5)=F(4.5)-F(1.5)=1-\frac{1}{6}=\frac{5}{6}$ using the cdf.

Note:

1. $0 \leq F(x) \leq 1$
2. $F(x)$ is an increasing function.
3. $F(y)=0$ for every point \mathbf{y} that is less than the smallest value in the space of X .
4. $F(\infty)=1$ and $F(-\infty)=0$
5. If X is a discrete random variable, then $F(x)$ is a step function and the height of the step at X in the space of X is equal to $f(x)=P(X=x)$.

Homework: 1.48, 1.50, 1.51, 1.54, 1.55(a, b, c only) on pages 35-36 (Handout)

